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Abstract
Decompilation is an important part of threat analysis for cyber-
security. Unfortunately, decompiled code is missing informa-
tion relative to the corresponding original source code, which
makes this process more difficult for reverse engineers that
manually perform threat analysis. Thus, the interpretability
of decompiled code matters, as it can influence reverse engi-
neers’ productivity. There is some existing work in predicting
some of the missing information using statistical methods,
but these focus largely on variable names and variable types.
In this work, we more holistically evaluate decompiler output
and use our findings to inform directions for future decom-
piler development. More specifically, we use open-coding
techniques to identify defects in decompiled code beyond
missing names and types. To ensure that our study is robust,
we compare and evaluate several different decompilers. We
analyze our results and build a taxonomy of decompiler de-
fects. Using this taxonomy to reason about classes of issues,
we suggest specific approaches that can be used to mitigate
interpretability issues in decompiled code.

1 Introduction

Decompilation—the process of analyzing a compiled pro-
gram and recovering a source-code program that portrays
the same behavior—is a crucial tool in computer security, as
it allows security practitioners to more quickly gain a deep
understanding of the behavior of compiled programs. This
is particularly useful in security scenarios such as analyz-
ing malware and commercial-off-the-shell software (COTS),
where the source code may be unavailable. By converting
executables into human-readable C-like code, decompilation
allows security practitioners to more effectively understand
and respond to the threats posed by malware [29]. An example
of this can be seen in the study by Ďurfina et al. [35], where
analysts employed a decompiler to analyze the Psyb0t worm,
a piece of malware that infects routers to build a botnet.

Analyzing and understanding the behavior of executable
code is significantly more difficult than analyzing source code

Original

1 void cbor_encoder_init(CborEncoder *encoder, uint8_t
*buffer, size_t size, int flags)

2 {
3 encoder->ptr = buffer;
4 encoder->end = buffer + size;
5 encoder->added = 0;
6 encoder->flags = flags;
7 }

Decompiled

1 long long cbor_encoder_init(long long a1, long long
a2, long long a3, int a4)

2 {
3 long long result;
4 *((_QWORD *) a1) = a2;
5 *((_QWORD *) (a1 + 8)) = a3 + a2;
6 *((_QWORD *) (a1 + 16)) = 0LL;
7 result = a1;
8 *((_DWORD *) (a1 + 24)) = a4;
9 return result;
10 }

Figure 1: A decompiled function and its source definition.
Decompilers can’t recover many of the abstractions that make
source code readily readable by human developers. Further-
more, they may incorrectly recover semantics, as demon-
strated by the decompiled function’s extra return statement.

due to information that is removed by the compilation pro-
cess. Indeed, while high-level programming languages con-
tain abstractions and constructs such as variable names, types,
comments, and control-flow structures that make it easier
for humans to write and understand code [28], executable
programs do not. These abstractions are not necessary for
an executable program to run, and thus they are discarded,
simplified, or optimized away by compilers in the interest of
minimizing executable size and maximizing execution speed.
This means that those useful abstractions are not present when
it comes time to analyze an executable program, such as mal-
ware, without access to its source code.
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Traditionally, security practitioners would reverse engineer
executables by using a disassembler to represent the semantics
of the program as assembly code. While better than nothing,
assembly code is still far from readable. Decompilers fill this
gap by analyzing an executable’s behavior and attempting to
recover a plausible source code representation of the behavior.
Despite a great deal of work, decompilation is a notoriously
difficult problem and even state-of-the-art decompilers emit
source code that is a mere shell of its former self [14, 20, 27,
31, 32]. Despite this, decompilers are one of the most popular
tools used by reverse engineers.

Figure 1 shows what a decompiled function looks like
compared to the original function definition. Although the de-
compiled code is C source code,1 it is arguably quite different
from the original, and quite awkward to read. We say that de-
compiled C code is not idiomatic; that is, though it is grammat-
ically legal C code, it does not use common conventions for
ensuring that source code is readable. Further, as Figure 1 also
illustrates, decompiler output may be incorrect; that is, it may
be semantically nonequivalent to the code in its executable
form. We collectively call these issues—readability and cor-
rectness issues—interpretability issues. (See Section 3.1 for
a more thorough discussion of interpretability).

Interpretability issues are problematic because decompiled
code is usually created to be manually read by reverse engi-
neers. Reverse engineering is a painstaking process which
involves much time spent rebuilding these abstractions as
the reverse engineer develops an understanding of what the
executable binary does [29]. Thus, the interpretability of de-
compiled code matters, as it can significantly impact reverse
engineers’ productivity.

Improving the functionality and usability of decompilers
has long been an active research area, with many contempo-
rary efforts [6, 11, 12, 23, 30]. A recent trend in this direction
is using deep learning-based techniques to improve the pro-
cess of decompilation [10, 13, 15, 16, 25], or directly the
output of decompilers [1, 4, 9, 19, 24], inspired by advances
in natural language processing. The latter strands of work
have the potential benefit of building on top of mature tools
like Hex-Rays and Ghidra instead of operating on binaries,
and have already seen promising results for recovering miss-
ing variable names and types. Here, researchers have been
developing models that learn to suggest meaningful informa-
tion in a given context with high accuracy, after seeing many
examples of original source code drawn from open-source
repositories like the ones hosted on GitHub.

However, while variable names and types are certainly im-
portant for program comprehension, including in a reverse
engineering context [6, 29, 33], there are many more charac-
teristics of decompiled code that make it difficult to interpret,
and relatively little knowledge of what they are, how they vary
across decompilers, how they impact interpretability, and what

1Decompiled code is not always syntactically correct C code.

are the implications for learning-based approaches aiming to
improve the interpretability of decompiled code.

We argue that before designing more advanced solutions,
we first need a deeper understanding of the problem. Conse-
quently, in this paper we set out with the Research Goal of
developing a comprehensive taxonomy of the characteristics
that make decompiled code difficult to interpret. Concretely,
we start by curating a sample of open-source functions decom-
piled with the Hex-Rays,2 Ghidra,3 and retdec4 decompilers.
Next, we use thematic analysis, a qualitative research method
for systematically identifying, organizing, and offering in-
sights into patters of meaning (themes) across a dataset [5],
to analyze the decompiled functions for interpretability de-
fects, using those functions’ original source code as an oracle.
To minimize subjectivity, we develop a novel abstraction for
determining correspondence between code pairs, which we
refer to as alignment. Using this abstraction, we precisely and
unambiguously define interpretability defects in decompiled
code, creating a taxonomy consisting of 14 top-level issue
categories with 48 in total. In turn, we use our taxonomy
to suggest how the issues could be addressed, framing our
discussion around the role that deterministic static analysis
and learning-based approaches could play. Our results are
robust both across different researchers as well as the three
decompilers we considered.

In summary, we make the following contributions:

• A comprehensive, hierarchical taxonomy covering inter-
pretability issues in decompiled code beyond names and
types.

• 160 coded decompiled/original function pairs, identify-
ing over one thousand instances of issues in our taxon-
omy.

• A novel abstraction for assigning code correspondence
in source code pairs and a framework built on this ab-
straction for rigorously applying open coding to those
source code pairs.

• A comparison of three different modern decompilers.

• A thorough analysis describing classes of decompiler
issues and suggestions on what techniques could be used
to fix them.

2 Related Work

2.1 Decompilation
Significant efforts have been made in recent years to improve
the performance of decompilers. A large portion of these

2https://hex-rays.com/decompiler/
3https://ghidra-sre.org/
4https://github.com/avast/retdec
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efforts concentrate on addressing the core challenges in pro-
gram analysis that are fundamental to decompilation, which
mainly include type recovery and control flow structuring.

Type recovery is the process of identifying variables and
assigning them reasonable types by analyzing the behavior of
the executable. We refer readers to an excellent survey of type
recovery systems [7], but also review some notable security-
oriented work developed in recent years. This includes sys-
tems that operate on dynamic runtime traces, such as RE-
WARDS [21], and follow-on systems that statically recover
the types by analyzing the executable code at rest. TIE [20]
is an examplar static recovery system whose design has been
used in the academic Phoenix [27] and DREAM [31, 32] de-
compilers. The Hex-Rays decompiler uses its own static type
recovery system [14].

Control flow structuring is the process of converting a
control flow graph (CFG), which is unstructured, into the
structured control flow commands that are more common in
source languages, such as if-then-else and while loops. The
Phoenix [27] decompiler introduced a control flow structur-
ing algorithm that was designed explicitly for decompilation
in that it was semantics preserving, unlike other more gen-
eral structuring algorithms. One of the main challenges of
control flow structuring is how to handle code that cannot
be completely structured, which can be caused by using non-
structured language constructs such as gotos. Although the
Phoenix algorithm preserved semantics, it emitted gotos for
unstructured code, which could make the decompiled code
hard to read. The DREAM [31] and DREAM++ [32] decom-
pilers followed up on this work by introducing a new control
flow structuring algorithm and other changes that were in-
tended to improve the usability of the decompiler. Notably,
their structuring algorithm duplicated some code to avoid
emitting gotos, which they found to improve readability.

Some researchers [8, 13, 16, 17] have focused on using
machine learning to model the entire decompilation process.
This approach, known as neural decompilation, attempts to
map a low-level program representation, such as assembly, di-
rectly to the source code of a high-level language like C using
a machine learning model, sometimes in multiple phases. To
some extent, these approaches sidestep the need to identify
specific interpretability defects in decompiled code because
they are theoretically capable of generating decompiler output
that is completely identical to the original source code for that
program. However, neural decompilation often fails to match
the original source code.

2.2 Improving decompilation through learn-
ing

A recent area of work has studied whether it is possible to
correct some of the limitations of current decompilers through
learning-based methods. A popular focus of this work is re-
covering variable names for decompiled code, which is a

problem that is not well-suited to traditional program analysis
since the variable names are not explicitly stored in the exe-
cutable. Lacomis et al. [19] and Nitin et al. [24] found that
the generic variable names used in most decompilers (v1, v2,
etc.), make it more difficult to read decompiled code than the
original. In response, they propose machine-learning-based
tools that propose meaningful variable names in decompiled
code to help alleviate this issue. Chen et al. [9] also found that
variable types are often recovered incorrectly by decompil-
ers, especially composite types like C-language struct, array,
and union types. They build a machine-learning-based tool
to predict missing variable names and types at the same time,
and note that variable names inform variable types and vice
versa. However, while variable names and types are impor-
tant interpretability defects, they represent only a subset of all
readability defects in decompiled code. Our study develops a
more complete taxonomy of readability defects in decompiled
code.

2.3 Taxonomy of decompilation defects
Liu and Wang [22] do provide a taxonomy of some defects in
decompiled code, but their study is orthogonal to ours. They
focus only on those defects that produce semantic differences
in the source code, while we more broadly investigate the
defects in decompiled code that cause reverse engineers dif-
ficulty in determining the functionality of the decompiled
code, including semantic differences. Further, their taxonomy
differentiates these semantic defects by the phases of decom-
pilation in which they originate rather than by the nature of
the defects themselves. In short, their study focuses on the
decompiler itself while ours focuses on the interpretability of
the decompiler output.

3 Methodology

We used open-coding techniques [18] to identify the defects
that make decompiled code difficult to analyze. In particular,
we used pairs of function representations: a decompiled func-
tion and the corresponding original function. Open coding
is typically used on textual data, such as interview data, to
provide a systematic strategy for analyzing patterns. Coding
pairs of source code functions like this offered some unique
challenges. First, we detail the philosophy we developed to
help overcome those challenges. Next, we discuss practices
we used to help guide the coding process. Finally, we discuss
the process we used to code our examples and develop the
codebook.

In open-coding techniques, features of the analyzed entity
are assigned labels called “codes.” Unfortunately, “code” is
also a word used to describe text written in a programming
language. In this paper, for clarity, we will use “label” to refer
to open-coding codes and “code” or “source code” to refer
to text written in a programming language. “Original code”
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and “decompiled code” are types of source code, the former
(most likely) written by a human programmer and the latter
generated by a decompiler from an executable program. We
continue to use the term “codebook” to indicate the collection
of all open-coding labels rather than the term “labelbook.”

3.1 Interpretability
Our study is intended to identify, characterize, and catalog
the characteristics of decompiled code that make it difficult to
analyze; that is, to determine the features of decompiled code
that inhibit the analyst from understanding what a given piece
of code does. “What a given piece of code does” is, most
precisely, its runtime behavior, but running arbitrary executa-
bles is cumbersome and observing runtime behavior is nearly
impossible. (We can only easily observe a subset of behavior:
output). As a result, our proxy for runtime behavior—our
oracle—is the original source code. Derived from this prin-
ciple, the labels in our codebook are expressed in terms of
differences relative to the original source code rather than in
terms of concrete features of the decompiled code. Hence-
forth, we use the term “difference” to refer to the difference
between a piece of decompiled code and the corresponding
piece or original code.

There are several ways that a source code representation
(e.g. decompiled code) of some abstract true functionality (e.g.
runtime behavior) could inhibit an analyst from understanding
that true functionality:

• if the code represents functionality that is different from
the true functionality. An analyst might be mislead into
thinking that the functionality is something other than
what it actually is. In our case, this occurs when there is
a semantic difference between the decompiled code and
our oracle, the corresponding original code. We refer to
this as a correctness issue.

• if the code is semantically equivalent but is communi-
cated using language that is difficult to interpret. We
refer to these as readability issues.

Our oracle is most suitable for diagnosing correctness is-
sues. A human researcher can look at the decompiled code
and, with sufficient effort, determine if it is semantically equiv-
alent to the corresponding original code. It is less suitable
for identifying readability issues. After all, there is no guar-
antee that the original source code is readable. Furthermore,
readability itself is somewhat subjective. What some might
consider readable others might not.

To shore up this source of subjectivity, we introduce a
second test. To determine if a difference affects readability,
we ask if the difference simply reflects a difference between
two common idiomatic styles. For example, the decompiler
may place opening curly-brackets on a new line after an if-
statement conditional, while the original code might place

them on the same line as the conditional. Both styles are
common and idiomatic, so this does not constitute a read-
ability issue. Each unique readability issue, along with each
correctness issue, is assigned a label.

Unfortunately, our solution to the readability oracle prob-
lem does not eliminate subjectivity. Rather, it shifts the subjec-
tivity to a different place—what styles are idiomatic? We esti-
mate idiomaticity by asking if a given style is common in C-
language source code. For example, some original code func-
tions include extraneous code like a do { ... } while(0);

loop. In each instance we observed this, the decompiled code
does not include the extraneous code. We consider this differ-
ence to be benign. Another example is inverted conditional
statements. The original code might have an if statement of the
form if (!a) b else c, while the decompiled code might
represent that if statement as if (a) c else b. One ordering
of the clauses is not necessarily more idiomatic than the other.
Missing volatile or static keywords in the decompiled
code are also benign differences because they do not affect the
computations the function performs. We provide a list of dif-
ferences that we do not consider to be non-idiomatic, and thus
are not classified as readability issues, in the appendix. Fur-
ther, as prior work has identified [9, 19, 24], variable names
and types are often different in decompiled code. While these
do constitute readability issues, we do not include them in
our taxonomy so as to focus on interpretability issues not
identified by prior research.

We treat borderline cases, as well as differences which only
sometimes result in non-idiomatic code, as readability issues.
A summary of the decision process we used to determine if a
code should be added to the codebook is shown in Figure 2.

3.2 Coding Standards

Performing open-coding on our data presented some inter-
esting challenges. We detail them and our solutions to them
here.

3.2.1 Alignment

A critical assumption made in Section 3.1 was that differ-
ences between decompiled and original code could be easily
identified. However, it is not immediately evident what pre-
cisely constitutes a “difference.” Our goal is to determine
if and how clearly the functionality present in the original
code is communicated. Thus, we want to determine which
pieces of the the code are supposed to represent the same
functionality. We say two code fragments that perform the
same functionality (or are intended to) are aligned. If the text
of aligned code fragments is not identical, this constitutes a
difference.

We have found that it is often easy to align code by hand,
but it is challenging to define what it means for code to be
aligned. Figure 3 demonstrates several factors that make align-
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No

Yes

Results in different
function semantics?

No
Yes

Is decompiled code
idiomatic?

Difference between decompiled and original code

Add to codebook Benign

Figure 2: The process by which a difference between the de-
compiled code and corresponding original code was added to
the codebook. Differences added to the codebook are consid-
ered meaningful defects, while others are considered benign
differences in style. When in doubt, differences were added
to the codebook.

ment difficult. Decompilers may introduce extra statements,
such as declarations and operations for variables that have
no equivalent in the original source code (e.g., decompiled
line 3 of Figure 3). Decompilers may also break complex
expressions down into multiple statements, as happens when
line 9 in the original code is broken into two statements in
the decompiled code (lines 7 and 8). The opposite can be
true as well—decompilers can inline expressions that are sep-
arate in the original code, and can even exclude code from
the original function like redundant or extraneous assert state-
ments. Thus, line numbers and other simple heuristics are
generally unsuitable for aligning statements. In fact, many-
to-one and one-to-many mappings between statements, like
Figure 3’s original line 9 and decompiled lines 7 and 8, means
that alignment can’t even be thought of as a mapping between
individual statements.

To alleviate these challenges and to precisely differentiate
labels, we introduce a formal definition of alignment. We
model functions as seven-element tuples (F,A,P,C,η,B,ξ):

• F: a set of operators. An operator is the finest-grained
source-level unit of functionality from the perspective of
an individual function. The idea of an operator is analo-
gous to that of a machine instruction, but at the source
level. Operators can be function calls like set_error in
Figure 3 or ==. The former is an operator that accepts
four arguments, the latter accepts two. We assume with-

out loss of generality that operators in functions can be
uniquely identified.

• A: a set of operator argument variables. A contains all
arguments for all operators in the function. For example,
in Figure 3, fset_error = f3 has for argument variables
a3,1,a3,2,a3,3, and a3,4.

• P: a set of parameters p1, ..., pn to the function.

• C: a set of constants c1, ...,cm used in the function.

• η : A → P ∪C ∪ F: a dataflow mapping determining
from which values are passed as arguments to each func-
tion. For example, in Figure 3, if fobj_dump_template = f6,
then a6,1 → p1, a6,2 → p2, a6,3 → fset_error, and a6,4 →
0. Taking inspiration from Single Static Assignment
(SSA) [2, 26], we use the notation φ() to indicate that
a given argument variable might be assigned different
values based on control flow e.g. ai, j → φ(c0, f7).

• B: A set of maximal basic blocks. Each basic basic block
is a partially ordered subset of 2F and consists of opera-
tors that execute without a change in control flow. The
partial ordering reflects operators with side effects which
must be executed in a specific order.

• ξ: B x B: A set of control-flow edges that connect basic
blocks.

Finally, an alignment is a mapping between operators in
different functions. An alignment mapping can be one-to-
many or many-to-one; that is there are cases when multiple
operators in the decompiled code represent the same function-
ality as one in the decompiled code and vice versa. A perfect
alignment is one in which the aligned operators perform the
same functionality and for which their control and data de-
pendencies match. If there are correctness issues in a piece
of decompiled code, then an alignment cannot be perfect. In
these cases, we must settle for a good approximate match.

In most cases, alignment is eminently evident when coding
an example, and it is unnecessary to consult the formal defini-
tion. However, the formal definition is useful for corner cases
and for further precisely defining certain labels.

3.2.2 Multi-coding

Certain decompiler defects exhibit the characteristics of sev-
eral different labels at once. In these cases, we allow for
multiple labels to identify the same issue. We carefully select
labels so that each fundamental issue receives its own label.

3.3 Dataset
We drew examples for our study from a large dataset derived
from open-source projects on GitHub. This dataset was gener-
ated in an automated fashion by scraping GitHub through its
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Original

1 void help_object(obj_template_t *obj, help_mode_t mode)
2 {
3 if (obj == 0)
4 {
5 set_error("help.c", 436, ERR_INTERNAL_PTR, 0);
6 return;
7 }
8
9 obj_dump_template(obj, mode, get_nestlevel(mode), 0);
10 }

Decompiled

1 long long help_object(long long a1, unsigned int a2)
2 {
3 unsigned int v3;
4 if (!a1)
5 return set_error("help.c", 436LL, 2LL, 0LL);
6
7 v3 = get_nestlevel(a2);
8 return obj_dump_template(a1, a2, v3, 0LL);
9 }

Figure 3: A decompiled function along with the corresponding original definition. Aligning decompiled code with the original
is often easy to perform by hand, but even a relatively simple function like this one illustrates some of the challenges in
defining alignment precisely. Except for return behavior, the decompiled function exhibits the same functionality as the original.
However, the decompiled code uses a different, though equivalent, test in the if conditional, contains extra variables, reorganizes
expressions, and uses a constant instead of the original code’s macro.

API to collect majority-C language repositories. In total, our
dataset contains functions from 81,137 repositories. A build
of each project was attempted by looking for build scripts
such as Makefiles and executing those to build executable
binaries. All binaries generated by the build process were col-
lected. Next, each binary was decompiled using the Hex-Rays
decompiler, and all functions in the binaries were collected for
a total of 8,857,873 across all projects. These functions were
matched with the corresponding original function definitions
in the original code. These functions were divided by size.
Functions with more than 512 sub-words (which together
make up an identifier name) and AST nodes were sorted into
in the large dataset (31% of the total); those with more were
sorted into the larger dataset (69% of the total). We mostly
used functions from the small dataset, though we also coded
ten functions from the large dataset.

3.4 Coding Procedure

We selected a random sample of 200 decompiled/original
function pairs. We performed coding in several phases. All
steps, except step five, were performed by the first author:

1. Collecting Differences. We examined the first 100 ex-
amples from the small dataset, building a set of differ-
ences without making judgement as to which semantics-
preserving differences constituted readability differences.
This also allowed us to get a sense of common, idiomatic
practices from amongst the original code samples.

2. Building the Codebook. Next, we assembled a code-
book from the differences. To do this, we first labeled
each semantics-preserving differences as either a read-
ability issue or a benign difference. All readability issues
and non-semantics-preserving differences (correctness
issues) were assigned a label. Labels were organized
hierarchically; higher-level labels generalizing several
related labels were created when necessary.

3. Coding Examples With a complete codebook, we then
labeled the next 100 examples from the small dataset as
well as 10 examples from the large dataset. This was an
iterative process which ultimately involved refining the
codebook and deriving precise definitions for each label.
There was some interplay between this phase and the
next.

4. Generalization Across Decompilers The process so far
had been dependent on code that was decompiled by the
popular Hex-Rays decompiler. However, we wanted to
ensure that our results were representative of issues faced
by decompilers in general and not specific to a certain
tool. Thus, we randomly sampled 25 of the second 100
examples, decompiled the corresponding binaries using
two other decompilers, Ghidra and retdec, and extracted
the requisite functions. We then labeled those examples
using the same codebook.

5. Generalization Across Coders To ensure that our code-
book was robust, we performed several rounds of inter-
coder reliability testing [3]. We gave the completed code-
book, along with thorough documentation and examples,
to a researcher with reverse engineering experience. We
randomly sampled 25 out of the second 100 examples
to gave these to him to code. We then computed inter-
rater agreement using kohen’s kappa between his labels
and the corresponding labels of the first author. Next,
we measured the agreement and analyzed the results for
any source of disagreement. We then updated the code-
book and performed the process again with a different
researcher. Our evaluation of intercoder agreement is
shown in Table 1.

4 Results

Our study yielded a comprehensive codebook of defects in
decompiled code. Our codebook is organized hierarchically,
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Original Code

1 void mklst(Node ** list, int n) {
2 Node * head = malloc(sizeof(Node));
3 head->x = 0;
4 head->y = 0;
5 head->next = 0;
6
7 Node * current = head;
8 for (int i = 1; i < n; i++) {
9 current->next = malloc(sizeof(Node));
10 current = current->next;
11 current->x = 0;
12 current->y = 0;
13 }
14
15 current->next = 0;
16 *list = head;
17 }

Decompiled Code

1 unsigned long long mklst(_QWORD *a1, int a2) {
2 unsigned long long v3;
3 _QWORD *v4;
4 _QWORD *v5;
5 v3 = __readfsqword(0x28u);
6 v4 = malloc(24LL);
7 *((_QWORD *) v4) = 0uLL;
8 *((_QWORD *)(v4 + 8)) = 0;
9 v5 = v4;

10 for (i = 1; i < n; ++i) {
11 *((_QWORD *)(v5 + 8)) = malloc(24LL);
12 v5 = *((_QWORD *)(v5 + 8));
13 *((_QWORD *)(v5)) = 0;
14 }
15
16 *((_QWORD *)(v5 + 8)) = 0;
17 *(_QWORD *)a1 = v5;
18 return __readfsqword(0x28u) ^ v3;
19 }

1 char * format_name() {
2 int len = (strlen(user.name) + 4);
3 char * buffer = malloc(len * sizeof(char));
4 buffer[0] = ’\0’;
5 strcat(buffer, "{");
6 strcat(buffer, user.name);
7 strcat(buffer, "}\n");
8 return buffer;
9 }

1 char * format_name() {
2 int v1;
3 char * v2;
4 char * v3;
5 v1 = strlen(&dword_9368) + 4;
6 v2 = malloc(v1);
7 v2[0] = 0;
8 *((_WORD *) (v2)) = 123;
9 strcat(v2, &dword_9368);

10 v3 = &v2[strlen(v2)];
11 *((_WORD *) v3) = 2685;
12 v3[2] = 0;
13 return v2;
14 }

1 int **alloc2d_int(long n, long m)
2 {
3 if (n < 1 || m < 1)
4 error_exit("Invalid size");
5
6 int *data = malloc((n * m) * (sizeof(int)));
7 if (!data)
8 return 0;
9
10 int **array = malloc(n * (sizeof(int *)));
11 for (int i = 0; i < n; i++)
12 {
13 array[i] = &data[i * m];
14 }
15
16 long bytes = n * m * sizeof(int)
17 bytes += n * sizeof(int *);
18 logalloc(bytes);
19
20 return array;
21 }

1 _QWORD *alloc2d_int(int a1, int a2)
2 {
3 _QWORD *v3;
4 char *v4;
5 long long v5;
6 int i;
7 if (a1 < 1 || m < 1)
8 error_exit((long long) "Invalid size");
9

10 v4 = (char *) malloc((4LL * a2) * a1);
11 if (!v4)
12 return 0LL;
13
14 v3 = malloc(8LL * a1);
15 for (i = 0; i < a1; ++i)
16 v3[i] = &v4[(4 * a2) * i];
17
18 v5 = a1 * a2 * 4
19 v5 = v5 + a1 * 8;
20 LODWORD(v5) = 0;
21 logalloc(v5, a1);
22
23 return v3;
24 }

C11. Abuse of memory layout

C12. Incorrect return behavior

C1. Non-idiomatic dereference

C6. Non-idiomatic literal representation

C7. Obfuscated  
control flow

C5. Unaligned 
variable

C8. Issue in representing global variable  
C13. Decomposition of composite variable

C3. Typecast issue

C14. Type-
dependent 
nonequivalent 
expression

C10. Use of decompiler-
specific macroC9. Expanded Symbol

C2. Unaligned 
code

C4. Nonequivalent Expression

Figure 4: Examples of each of the top-level labels in our codebook. These examples have been artificially constructed by
combining code fragments and common patterns from our sample in such a way that all fourteen top-level labels are represented
at least once. For legibility, only one instance of each top level label is identified in the diagram, though there are multiple
instances of certain issues present across each of the functions. In some cases, a subclass of the top-level label might apply; in
this diagram, we identify issues only by their top-level labels for simplicity.
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Measure Round 1 Round 2
Lines researchers agreed had interpretability issues 0.67 0.78
Mean agreement across all labels 0.44 0.58
Weighted mean agreement across all labels 0.70 0.78

Table 1: Cohen’s Kappa coefficient of intercoder agreement for each round of testing. After the first round of testing, we updated
our codebook to make it more robust. This lead to an increase in measured agreement. Cohen’s kappa is usually interpreted as
follows: > 0.4 indicates moderate > 0.6 indicates good, and > 0.8 indicates very good agreement. The bottom two rows are the
mean and weighted mean of cohen’s kappa individually. The mean is lower because of disagreement on rare issues. However, we
found that some disagreement was not true disagreement but rather the result of mismatched assumptions about information
external to the example function or simple fatigue.

with broad, fundamental classes of issues at the top of the
hierarchy and more specific instances at lower levels. There
are 14 top-level labels, and 48 codes across all levels. In this
section, we’ll discuss each of the top-level labels in turn. Fig-
ure 4 contains several artificial example functions, composed
of code fragments and specific issues observed in our dataset,
which collectively illustrate all 14 top-level labels at least
once. The complete codebook is provided in Figure 6 in the
appendix.

C1. Non-idiomatic dereference: This occurs when a
pointer variable in the decompiled code is used in a way
that does not reflect its type in the original code. Formally,
it refers to a mismatch between aligned operator(s) where
the operator in the original code is used to access value at
or relative to a memory location. For example, in Figure 4,
C1 labels what was a struct dereference in the original code
(current->next) decompiled as a sequence of three opera-
tions: pointer arithmetic, a typecast, and a pointer derference
(*((_QWORD *)(v5 + 8))). The example in Figure 4 is in
particular an instance of the sub-label C1.a.i. (Pointer arith-
metic to access struct members) but there are others, including
situations where structs are accessed as if they are arrays
(C1.a.ii.), and where arrays are accessed with pointer arith-
metic (C1.b.ii.).

C2. Unaligned code: refers to situation where decompiled
code does not align with any code in the original function;
that is, the code is extra or missing relative to the original.
Figure 4 illustrates an example where an extraneous vari-
able, i.e. one that does not occur in the original source code,
is itself initialized by an expression that does not occur in
the original source code. In some cases, the original code
will include code that is entirely irrelevant to delivering func-
tionality. For example, some examples in our dataset include
do { ... } while(0); loops. We do not label these with C2
because they do not contribute information about the decom-
piled code’s functionality.

C3. Typecast issues: refers to extra or missing typecast
operators relative to the original. We do not consider this
to be a part of C2 because extra or missing typecasts are a
consequence of decompilers’ imprecise type recovery and in
that sense could be considered to align with other operators to

ensure that the decompiled code typechecks properly. Figure 4
illustrates an instance of an extra typecast added to a string
literal, a pattern with some string literals in our dataset.

C4. Nonequivalent expression: refers to a collection of
operators that align but that are not semantically equivalent to
each other. Figure 4 illustrates one of several patterns found
in our dataset, where a function call in the decompiled code
receives an extra argument.

C5. Unaligned variable: This label refers to a situation
where a variable in the decompiled code is missing or ex-
tra relative to the original code. Our alignment formalism
discussed in Section 3.2.1 defines alignment as a mapping be-
tween operators. Those operators can be connected in various
ways by variables while still ensuring semantic equivalence.
We define an alignment of variables as a mapping between
sets of dataflow connections A → P∪C∪F between opera-
tors. A good variable alignment minimizes the differences
between sets. For example, in the format_name function in
Figure 4, the decompiled code’s variable v1 variable fulfills
the same role as the len variable, so these two align. Simi-
larly, v1 aligns with buffer. However, the variable v3 in the
decompiled code does not correspond to any variable in the
original code; rather, it helps perform part of the functionality
of an inlined function. Thus, it is extra relative to the origi-
nal source code. Another example of a situation where extra
variables can occur is when a multi-operator expression in
the original code is broken up into two separate expressions
with a variable storing the intermediate result. This occurs in
Figure 3 where line 9 of the original code is split into lines 7
and 8 of the decompiled code.

C6. Non-idiomatic literal representation: This label is
used to label literals used in nonstandard ways. For example,
in Figure 4, the string literal "}\n" is replaced with the integer
constant 2685.

C7. Obfuscated control flow: This label is used when con-
trol flow is used in a way that is not idiomatic. In Figure 4, the
strcat function is inlined. It may be harder to recognize what
the decompiled code is doing relative to the original source
code when a function definition is presented inline instead
of the name which summarizes that functionality. Another
example of C7 is a for-loop used in a non-idiomatic way, such
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as the following excerpt from our dataset:
Original Code
1 while (pack->next_object != obj)
2 {
3 pack = pack->next_object;
4 }

Decompiled
1 for (i = a2; a1 != (*((_QWORD *) (i + 64)));
2 i = *((_QWORD *) (i + 64)));

This example also contains instances of C1 (non-idiomatic
dereference), which also contribute to making it harder to
read.

C8. Issues in representing global variables: We ob-
served that decompilers sometimes struggled to represent
global variables correctly. In our examples, global variable
names were not explicitly stripped out. Thus, in some cases, a
reference to a global variable could occur by referencing the
name of the global variable, just as occurred in the original
source code. However, this was not always the case, espe-
cially with composite global variables. For example, Figure 4
illustrates an example of a pattern in our dataset where a
global struct is broken up into multiple variables. The .name
component of the struct is represented with a reference to a
decompiler-generated global variable seemingly named after
a memory location.

C9. Expanded symbol: refers to the situation where a
macro or similar construct like sizeof is represented by its
value rather than by the symbol itself. For example, Figure 4
shows an example of how a sizeof expression is replaced
with a constant.

C10. Use of decompiler-specific macros: Some decom-
pilers define and use macros in decompiled code. Examples
of this is the LODWORD macro shown in Figure 4 and similar
macros used by the Hex-Rays decompiler, which are used
in some situations involving type conversion and bitwise op-
erators. As with any feature of decompiled code, these may
become less problematic from an interpretability perspective
the more a reverse engineer becomes familiar with them, but
they represent more information a user must know interpret
decompiled code.

C11. Abuse of memory layout: This label refers to the sit-
uation where memory is used in a non-idiomatic while being
semantically equivalent to the original code. For example, Fig-
ure 4 illustrates a situation where two consecutive elements of
a struct are each initialized to 0. The decompiled code treats
both struct members as a single entity and assigns 0 to the
entire construct.

C12. Incorrect return behavior: Sometimes, a decom-
piled function returns a value while the original function does
not or vice versa. In these scenarios, we code C12; there is
one sub-label for each of the two situations. Figure 4 shows
an instance of C12.a, where a function that is originally void

has a return value.
C13. Decomposition of a composite variable: When

composite variables like structs or arrays are used directly
in a function (as opposed to with a pointer), the decompiler
may interpret the members of those composite variables as
separate variables. Figure 4 illustrates this happening with a
global variable.

C14. Type-dependent nonequivalent expression: This
occurs as a by-product of the decompiler choosing an in-
correct type. When the decompiler chooses an incorrect type,
it may cause other expressions to become incorrect relative to
the original code such that changing only the type does not fix
the code. In Figure 4, the decompiler interprets what should
be an int array as a char array. Accordingly, to ensure the
behavior of the function remains the same, the decompiler
uses the expression (4 * a2) * i as compared with the orig-
inal code’s i * m (where a2 aligns with m). If the type in the
decompiled code was corrected to int *, the resulting code
would be incorrect without further changes.

5 Discussion

Our taxonomy can be used to reason about issues in decom-
piled code. In particular, we are interested in improving the
interpretability of decompiler output. We use our taxonomy
to reason about how certain classes of issues can be fixed.

In addition, we compare the three decompilers used in the
study. We use the taxonomy to identify how each decompiler
performs.

5.1 Mitigating Issues

An analysis of the issues mentioned in our taxonomy suggests
ways that issues might be mitigated. We caution that our
discussion here is based on our subjective judgement; it is
impossible to know how technological advances will change
decompilation.

Decompilation is a difficult process involving sophisti-
cated static analysis techniques. In recent years, there has
been an increasing amount of work focused on decompiling
with the assistance of statistical methods like machine learn-
ing [8, 9, 13, 16, 17, 19, 24]. In theory, a nondeterministic
approach is attractive because a general-purpose technique
like a large language model is capable of generating arbitrary
strings of text or code. Thus, a nondeterministic technique
is capable of producing code very much like the original
without the need for sophisticated static analysis. However,
these techniques can also make arbitrary mistakes, potentially
misleading reverse engineers. Along with these techniques’
black-box nature, this may mean that reverse engineers may
not trust them, a previously-identified problem in AI [34]. In
contrast, as a reverse engineer who participated in Votipka et
al.’s [29] study of the reverse engineering process said, "[...]
Hex-Rays can be wrong, and disassembly can’t be. And this is
generally true, but Hex-Rays is only wrong in specific ways."
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Thus, we would prefer to suggest solutions to interpretabil-
ity issues in decompiled code that use more determinism if
possible. We differentiate between four different categories
of determinism in our analysis:

• Deterministic: The approach we suggest can fix the de-
fect purely through rules-based static analysis. In these
cases, we identify the rules that could be used to fix the
issue.

• Heuristically optimizable deterministically: These de-
fects can be largely optimized away by following certain
rules, but cannot match the original code in every case
without nondeterminism.

• Deterministic given types: These defects result from the
decompiler lacking complete information about the type
of one or more variables. Type prediction itself can’t be
done deterministically. However, with this class of de-
fects, the decompiler can use a deterministic rules-based
approach after receiving the types of relevant variables.

• Nondeterministic: We can’t identify a rules-based ap-
proach based purely off of the information in the exe-
cutable. These issues require more nondeterminism than
just type information.

Note that correctness issues may be due to decompiler bugs.
We have no way of knowing which defects reflect the intended
behavior of the decompiler and which are bugs; as a result, we
assume that all decompiler output is a result of the decompiler
functioning as intended.

In the following discussion, we make references to the
relative frequencies of certain labels. We caution that our
sample may not be representative of software in general, and
that these relative frequencies may differ in other software.

We organize our discussion by the degree of nondetermin-
ism our suggested fixes require, beginning with deterministic
fixes.

5.1.1 Deterministic

Some defects of decompiled code are fixable with solely
rules-based approaches. They are relatively rare. It appears
the sophisticated static analysis techniques used by modern
decompilers already take advantage of most deterministic
opportunities for improving interpretability.

C10 issues (use of decompiler-specific macros) only oc-
curred in examples decompiled by Hex-Rays. This indicates
by example that it is possible to decompile complex these op-
erations without decompiler-specific macros. Figure 5 shows
an example of a C10.a issue that exists when Hex-Rays de-
compiles an executable but not when Ghidra does. Some users
of Hex-Rays may find these macros helpful because they help
explicitly specify what is happening to specific bytes in an
expression. However, in general, we do not know if they are

Original Code
1 sreg |= 1 << 7;

Decompiled by Hex-Rays
1 LOBYTE(result) = sreg | 0x80;
2 sreg = result;

Decompiled by Ghidra
1 sreg = sreg | 0x80;

Figure 5: How an example bitwise oepration is decompiled
by Hex-Rays and Ghidra compared to the original source
code. In each instance where we identified code C10 for Hex-
Rays, we did not identify it for Ghidra. Label C10 refers
to decompiler-specific macros used with bitwise operators;
LOBYTE here.

more or less preferable to reverse engineers than the original
code. In any case, C10 represents a barrier to entry for those
unfamiliar with this aspect of the tool.

C6.d. refers to situations where a string is replaced
by a reference to another location in the binary, e.g.
fz_strlcpy(param_4,&DAT_00100cdf,param_5) instead of
fz_strlcpy(buf, "CBZ", size). In this case, a rule that al-
lows for the recovery of the string is to go to the location
provided and replace the reference with the string at that loca-
tion.

Finally, C5.a.i (extraneous variable duplicating another vari-
able) can often be addressed deterministically. Variables as-
signed this code do not align with variables in the original
program, copy the value in another variable, and could be
replaced with the variable they copied from without altering
function semantics. In most cases, duplicate variables are
never read from after initialization. These variables can be
found and replaced deterministically.

5.1.2 Heuristically optimizable deterministically

These issues can be fixed largely deterministically—in a
heuristically optimal way—but cannot match the original
source code exactly without nondeterminism.

Unaligned variables (C5)—that is, those that are missing
(C5.b) or extra (C5.a) relative to the external code—are a
common example of this. Data can flow between operators
in various ways. If abar,1 → foo; that is, the first argument
to bar is the result of evaluating foo, we can represent this
dataflow in source code by either inlining the two expressions
(as in bar(foo());) or by assigning the result of foo to a vari-
able and passing this to bar (as in v1 = foo(); bar(v1);).

In our observation, all three decompilers usually opt for the
second approach. This results in many extra variables (C5.a)
not present in the original source code, cluttering the code
and, in our experience, making it harder to follow.

Of course, sometimes it makes sense to use variables to
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store intermediate values. When the result of an expression is
used more than once, saving the value rather than recomputing
it often makes sense. Variables are often needed when their
values are updated in a loop body. And in some cases, break-
ing a long expression down into smaller sub-expressions in a
sensible way can help make those complicated expressions
easier to understand. Finally, programmers will occasionally
declare extraneous variables on purpose, often for type-related
reasons, as occurs in this snippet from our dataset:

1 void FreeTextStream(void *ios)
2 {
3 TextStream *io = ios;
4 // other code using io but not ios ...

The arrangement of variables that is “most readable” is some-
what subjective, and can’t be found deterministically.

In general, though, for all three decompilers, extra variables
greatly outnumbered missing ones, indicating that decompil-
ers generally tend to err too much on the side of using inter-
mediate variables, at least relative to what the authors of the
original code thought was best. In many cases, extraneous
variables can be eliminated by applying the following rule:
if the variable is assigned to then subsequently read from
once, eliminate the variable and inline the two expressions.
In fact, this rule applies to v3 in Figure 3. It is possible that
this may help reduce reverse engineers’ mental strain because
they have to track fewer variables in the decompiled code.

C2.a.i is related to C5.a. C2.a.i refers to situations where
an extraneous expression (i.e. one that does not align with
anything in the original source code) is used to initialize an
extraneous variable. If extraneous variables are identified and
the extraneous expression has no side effects (which is usually
the case), then the whole extraneous initialization statement
can be removed.

Incorrect return behavior (C12) is another instance of a
heuristically optimizable issue. While types (including func-
tions’ return types) are out of scope for this study, we do
consider whether or not a function returns a value—this is a
correctness issue. Thus, we consider two possible cases for
incorrect return behavior: C12.a (return value for void func-
tion) and C12.b (no return value for non-void function). A
deterministic rule that sometimes fixes C12.a is to make a
decompiled function a void function if no function that calls
it collects a return value from it. This rule does not work all
of the time, however, in the case of functions that do have
a return value that just so happens to be unused by all other
functions in the program. Interestingly, it appears that Ghidra
may follow this rule, while Hex-Rays and retdec seemingly
do not. Accordingly, our Ghidra sample has no C12.a labels
but falls afoul of C12.b.

Thus, applying this rule incurs a trade-off. We endorse its
use, however, because the code to prepare a return value that
is never used can be thought of as extraneous from the per-
spective of the program as a whole. Eliminating it may in
fact enhance clarity. Meanwhile, unnecessary extra code for

returning values unnecessarily can clutter up functions, some-
times significantly. Additionally, C12.b also seems to be less
common than C12.a, though we caution that this observation
may be due to sample size.

5.1.3 Deterministic given types

We refer to some codes as “deterministic given types.” Many
codes fall into this category: C1, C3, C8, C11, C13, and C14.
Type prediction itself is nondeterministic in general. However,
correctly predict the type of the variables involved, and each
of these issues can be resolved deterministically. Some decom-
pilers, like Hex-Rays, already feature an API to re-decompile
a function when type information is given to correct these
issues; that is, the deterministic piece is already built into
these decompilers.

There is existing work on type prediction. Chen et al. [9]
develop a probabilistic model, DIRTY, for predicting types in
decompiled code, though their method is limited in two ways.
First, they predictions are over a fixed set of types, leaving the
model unable to generalize to types outside of this set. Second,
their prediction for a given variable is based on the memory
layout of that variable on the stack and how that variable is
used within a single given function. This is problematic in the
case of a very common class of variables: pointers, especially
pointers to composite types like structs. The memory layout
of a pointer variable on the stack is simply a single value
representing the memory location of the data.

However, it is still possible to infer the composite types
being pointed to based on how these types are accessed. Ac-
cesses of different parts of the composite type are, in the
general case, spread out throughout multiple functions. Any
individual function might only operate on a subset of a struct’s
members. Therefore, it might be necessary to examine all
functions in which a given composite data type is used to
determine what that type is. A struct may have fields that
are never used, which would be difficult to predict accurately.
However, it still may be possible to predict a struct with the
subset of fields that are used in the program.

We identify general type prediction as a major opportunity
to significantly improve the output of decompilation.

Type prediction can also often help with better representing
literals in certain situations. The decompiler often represents
character literals as small, positive integers (C6.a); when these
integers are used in conjunction with char variables, it may be
reasonable to convert each integer literal to the corresponding
character literals (i.e. 65 to ’A’). C6.c is a rare label that refers
to a situation where the decompiler represents a negative
integer as a large, positive integer that would overflow the
appropriately sized integer type. If that integer type is known,
the literal can be correctly and deterministically transformed
into a negative number in the decompiled code.
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5.1.4 Nondeterministic

Issues identified by nondeterministic labels require arbitrary
additions and deletions to the decompiled code to match the
original source code.

The label C2 refers to missing or extra code in the decom-
piled code relative to the original. C2.b (missing code) issues
are usually serious, and are discussed at the end of the section.

In some cases it is more tractable to address C2.a (extra
statement) issues—that is, to eliminate the extra statement. In
fact, C2.a.i (extra statement for initializing extraneous vari-
ables) can often be eliminated via a deterministic rules-based
approach after extraneous variables (C5.a) are identified as
discussed in Section 5.1.2. Similarly, extra code associated
with extraneous return behavior (C12.a) can also be elimi-
nated once those functions are identified. While most C2.a
issues fall into one of these two categories, we were unable
to find any common patterns amongst the others. Identifying
extra code likely requires nondeterminism in the general case
from a static analysis perspective.

The label C6 encapsulates non-idiomatic literal representa-
tion. In most cases, this issue can be fixed deterministically or
with only type information, but there are corner cases which
require nondeterminism.

The label C7 refers to non-idiomatic control-flow repre-
sentations. This is a good use case for function-level nonde-
terministic modeling. In C7, the semantics of the code are
presented correctly, but in a confusing manner. Because all of
the correct semantics are present, the non-idiomatic code is
reasonably predictive of the more idiomatic version.

C9 labeled issues (expanded macros and other symbols)
generally require nondeterminism to address. This is es-
pecially true for user-defined macros, which in our sam-
ple overwhelmingly were used to “name” a constant (like
CRYPT_ERRTYPE_ATTR_ABSENT representing 3). These macros
can be useful because they communicate information about
the meaning of certain constants. Addressing C9 issues may
require whole-program level information because it is often
not clear from a single instance of a constant the meaning that
the author assigned that constant. It may be possible, however,
for these usage patterns to be teased from the program as a
whole. The same is generally true for other macros, though
some may be “easier” than others.

C2.b issues occur when functionality is missing, and C4
represents most types of semantic nonequivalence between
two pieces of code. These are particularly difficult issues to
handle. With most other issue labels, the semantics of the pro-
gram as provided by the decompiler are predictive, sometimes
in a roundabout way, of the target original code. However,
with C2.b and C4, this is not the case. Thus, we wouldn’t
generally expect a predictive model to be able to correctly
fix them in general. It might be possible to infer the correct
behavior if a nondeterministic technique is able correctly infer
the purpose of the program as a whole. However, these issues

might be best addressed by refining the rules decompilers use
to generate source code.

5.2 Comparison of Decompilers
To ensure the robustness of our codebook, we examined the
same set of functions decompiled with the Hex-Rays Decom-
piler, Ghidra, and the retdec decompiler. With a common
standard taxonomy of decompiler interpretability issues, we
compare the three decompilers.

5.2.1 Hex-Rays Decompiler

The Hex-Rays decompiler is a popular commercial decom-
piler sold with IDA reverse engineering tools. Hex-Rays
tended to have many extraneous variables (C5.a). As noted in
Section 4, Hex-Rays sometimes uses custom macros (C10)
along with bitwise operators or type conversion operations.
Hex-Rays tended to struggle with global composite variables,
treating them as if they were separate global variables some
with names seemingly derived from memory locations (e.g.
dword_9368). Hex-Rays also tends to assume a return value
for many functions. We recorded no instances of C12.b. (no
return value for non-void functions) but numerous instances
of C12.a (return value for void function). In combination with
the tendencies of Hex-Rays to create variables to store those
extraneous return values and to favor a single return state-
ment at the function’s end rather than multiple throughout,
Hex-Rays sometimes added many extra lines of unnecessary
code.

5.2.2 Ghidra

Ghidra is an open-soruce decompiler developed by the Na-
tional Security Administration. Like Hex-Rays, Ghidra tends
to use many extraneous variables (C5.a), though we observed
expression inlining in a few cases. We observed no instances
of C5.a.i. (extraneous variable duplicating another variable),
while we did observe this for Hex-Rays, even on the same
functions. Like Hex-Rays, Ghidra tends to struggle with
global variables, though interestingly sometimes on differ-
ent functions. In one case, Ghidra recognized an issue with
overlapping symbols at the same address and provided a com-
ment warning about it. As discussed in Section 5.1.2, Ghidra
is more conservative with return values; we observed no in-
stances of C12.a but instead a single instance (in our sample)
of C12.b (no return value for non-void function).

5.2.3 Retdec

Retdec, an open-source “retargetable decompiler”, is a decom-
piler inspired by LLVM’s retargetable nature. Like the other
decompilers, retdec uses many extraneous variables (C5.a).
However, retdec is also the only of the three decompilers to
create extraneous variables that represent individual struct
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members. Retdec has many issues with representing global
variables (C8), and unlike the others, used generic placehold-
ers instead of global variable names (like g2) even when
those global names were available. Perhaps most concern-
ingly, retdec had many more instances of C4 (nonequivalent
expression) than Ghidra or Hex-Rays. Retdec has a tendency
to replace some expressions, especially string literals, with
the constant 0.

6 Threats to Validity

There are several threats to validity resulting from the
dataset’s composition and construction. In some security ap-
plications, binaries may be obfuscated, making them more
difficult to reverse engineer. The dataset we drew from did not
include any obfuscated binaries. It also consisted largely of C
projects from GitHub, of which a very small minority may be
malware. It is possible that there are different interpretability
issues that we did not consider that would be exposed had we
performed this research on obfuscated binaries or malware,
which may be disproportionately common in security settings.

Additionally, the dataset was constructed by attempting to
compile projects found on GitHub. The sample is necessarily
biased towards those projects that had recognizable build
scripts and further, that built.

Finally, the dataset that we drew from performed a filtering
step that removed grammatically invalid examples. Unfortu-
nately, this filtering step filtered out some grammatically valid
examples as well. This problem largely affected functions
where struct type names were declared using the struct

keyword in the function. Struct variables whose types were
declared with typedefed names were unaffected, and thus
our data includes many struct-typed variables. It is possible,
though unlikely, that this caused a certain type of decompiler
issue to be excluded from our sample, though we found no
evidence of this during spot-checks.

7 Conclusion

In this work, we study the characteristics of decompiled code
that make it difficult to interpret. We develop a strategy for
identifying and classifying interpretability defects in decom-
piled code. We then perform multi-step qualitative study of
interpretability defects, building a taxonomy. We analyze our
taxonomy, identify patterns in our data, and suggest how dif-
ferent classes of defects could be addressed.

We observe that a large group of defect types can be fixed
simply by identifying variable types and allowing the decom-
piler to re-construct the code with the new type information.
We observe that many other labels require nondeterminism
to be addressed in general but sometimes can be heuristically
optimized with deterministic rules.

Based on our results, we identify several promising future
directions for work on improving the output of decompilers.
First, techniques with the ability to predict types in general,
including the types of pointers, have the ability to help address
a large class of issues. Second, decompilers themselves could
adopt a collection of rule-based approaches which address
some issue classes and minimize the impact of others. Finally,
we see the opportunity for nondeterministic techniques, espe-
cially scaled to be multi-function or whole-program level, to
broadly address many classes of errors including some of the
most difficult issues and corner-cases that other techniques
do not solve.
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Here, we list the differences between decompiled and origi-
nal code that we counted as benign. These differences did not
receive a code and were not counted as interpretability issues.

• Rearranged statement order that does not change func-
tion semantics

• Rearranged expression order that does not change func-
tion semantics. For example, in the decompiled code
below, the expression multiplying the two arguments is
inlined into the mm_malloc and memset function calls.
This is semantically equivalent to the original code, and
is not definitively more or less idiomatic than the origi-
nal.

Original Code

1 void *mm_calloc(size_t nmemb, size_t size)
2 {
3 size_t bytes = nmemb * size;
4 void *newptr;
5 newptr = mm_malloc(bytes);
6 memset(newptr, 0, bytes);
7 return newptr;
8 }

Decompiled Code

1 void *mm_calloc(long long a1, long long a2)
2 {
3 void *s;
4 s = (void *) mm_malloc(a2 * a1, a2);
5 memset(s, 0, a2 * a1);
6 return s;
7 }

• Inverted conditional statement clauses. Sometimes the
decompiler will negate the conditional of an if statement
and switch its body and else clauses or do something
equivalent, as shown in the example below. Because it is
neither ordering is particularly more idiomatic than the
other, this sort of change does not receive a label.

Original Code

1 if (DaoIO_CheckMode(self, proc, DAO_STREAM_WRITABLE) ==
0)

2 return;
3
4 DaoIO_Writef0(self, proc, p + 1, N - 1);

Decompiled Code

1 result = DaoIO_CheckMode(*a2, a1, 8);
2 if ((_DWORD) result)
3 result = DaoIO_Writef0(v5, a1, (long long) (a2 + 1),

v4 - 1);
4
5 return result;

• Curly brackets on single-statement conditional

• < to <=, with appropriate operand adjustment

• New-style parameter type declarations instead of old-
style.

Original Code

1 int my_index(S, M)
2 char *S;
3 char M;
4 {
5 // ...

Decompiled Code

1 long long my_index(const char *a1, char a2)
2 {
3 // ...

• Loop break-return pattern instead of in-loop return

• Statement blocks or extraneous loop for organization not
reproduced.

Original Code

1 do
2 {
3 if (mk_write_id(c, id) < 0)
4 return -1;
5
6 }
7 while (0);

Decompiled Code

1 if (((signed int) mk_write_id(a1, a2)) < 0)
2 return 0xFFFFFFFFLL;

• Const introduced in decompiled code where appropriate.

• Dropped extraneous assert statement

• Condensed extraneous statements or expressions

• Add explicit types to integer literals (e.g. LL)

• Missing inline keyword

• Variable declaration and initialization on different lines

• i++ vs ++i as statement.

• Missing volatile or static keyword.

• Return statement at the end of a void function.

• Different print statements than intended.
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C1. Non-idiomatic dereference
C1.a. Non-idiomatic struct dereferences
C1.a.i. Pointer arithmetic to access struct members
C1.a.ii. Array access to access struct members
C1.a.iii. Pointer dereference to access first struct member
C1.b. Non-idiomatic array dereferences
C1.b.i. Pointer dereference to access array members
C1.b.ii. Pointer arithmetic to access array members

C2. Missing or extraneous statements
C2.a. Extraneous statement
C2.a.i. Extra statement to initialize extraneous variable
C2.b. Missing statement

C3. Typecast Issues
C3.a. Extraneous typecasts
C3.b. Missing typecasts

C4. Nonequivalent expression
C4.a. Incorrect arguments
C4.a.i. Extra arguments
C4.a.ii. Missing arguments
C4.a.iii. Unused missing arguments
C4.b. Equivalence depends on behavior of external code
C4.c. Extra & when accessing global variables

C5. Unaligned variable
C5.a. Extraneous variable C5.a.i. Extraneous variable dupli-
cating another variable
C5.b. Missing variable

C6. Non-idiomatic literal representation
C6.a. Character literals as integers
C6.b. String literal as single integer
C6.c. Very large positive integers for negative integers
C6.d. String replaced with reference to undeclared or global
variable

C7. Obfuscating control-flow refactorings
C7.a. While loop as non-canonical for loop
C7.b. For loop as while loop
C7.c. Inline function definition instead of function call
C7.d. Deconstructed ternary

C8. Issue in representing global variables

C9. Uses Expanded Macros
C9.a. Expanded standard macro
C9.b. Expanded user-defined macro

C10. Use of nontype decompiler-specific macro
C10.a. Bitwise operators with decompiler-specific macro

C11. Abuse of memory layout

C12. Incorrect return behavior
C12.a. Return value for void function
C12.b. No return value for non-void function

C13. Decomposition of a composite variable into multiple
variables

C14. Type-dependent incorrect expression

Figure 6: The complete codebook.
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