

♥ Pittsburgh, PA ⊠ j.lacomis@gmail.com 📞 (570) 881-1283 🔗 jeremylacomis.com

O jlacomis

About Me _

I am a Postdoctoral Fellow at Carnegie Mellon University with an interest in automated software engineering. I have extensive experience with decompilers and low-level source code, including automatically easing the ability for reverseengineers to effectively understand decompiled code. I am looking for opportunities to apply my experience to realworld problems.

Quick Guide _____

- Deep understanding of compilation, low-level programming, and decompilation.
- Experience combining machine learning with insights to lower the cognitive load of reverse-engineers.
- Comfortable with Python, C, Java, OCaml, and x86-64 assembly language.

Education _____

PhD	Carnegie Mellon University, Software Engineering	2017 - 2023
	• Dissertation: Automatically Annotating Decompiled Code with Meaning- ful Names and Types	
	Advisors: Claire Le Goues and Bogdan Vasilescu	
BA	University of Virginia, Computer Science	2015 - 2017
AS	Piedmont Virginia Community College, Computer Science	2010 - 2015
Expe	rience	
Carne	egie Mellon University, Mark Stehlik Postdoctoral Teaching Fellow	Pittsburgh, PA
	nstructor of record for four semesters of an introductory software engineering course.	June 2023 – Present
• [Designed new homework assignments, labs, and exams from scratch.	
• (Organized and led teams of 10 TAs with up to two other co-instructors.	
Gram	maTech, Software Engineer Intern	Ithaca, NY
	Completely refactored the Python interface to the GrammaTech Intermediate Rep- resentation for Binaries (GTIRB), adding documentation and automated tests.	May 2019 – Aug 2019
	Added functionality to the Python interface for serializing and deserializing GTIRB cuples, vectors, and intt64_t types.	
	Did preliminary experimentation with GTIRB to identify ways to automatically re- duce the attack surface of binaries without access to their source code.	
Seleo	cted Publications	
A Hur	nan Study of Automatically Generated Decompiler Annotations	DSN 2025 (accepted)
	Yang, Sykler Grandel, Jeremy Lacomis , Edward J. Schwartz, Bogdan Vasilescu, Le Goues, Kevin Leach	
	Performed a human study of 40 reverse-engineers to evaluate the effectiveness of automated decompiler annotations.	
• [Empirically demonstrated a lack of correlation between current best-known MI	

 Empirically demonstrated a lack of correlation between current best-known ML performance metrics and the effectiveness of variable type and name recovery.

 Found that users prefer code with annotations over code without annotations, even when the annotations do not significantly increase accuracy or reduce the time taken to understand decompiled code. 	
A Taxonomy of C Decompiler Fidelity Issues	USENIX 2024
Luke Dramko, Jeremy Lacomis , Edward J. Schwartz, Claire Le Goues, Bogdan Vasilescu	
 Created a comprehensive, heirarchical taxonomy of fidelity issues in decompiled code beyond names and types 	
 Compared the effectiveness of four different modern decompilers 	
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning	ICSE 2022
Qibin Chen, Jeremy Lacomis, Edward J. Schwartz, Claire Le Goues, Graham Neubig, Bogda	n Vasilescu
 Presented VarCLR, a novel method based on contrastive learning that learns general- purpose variable semantic representations 	
 Created GITHUBRENAMES, a weakly-supervised dataset of variable renamings col- lected directly from GITHUB 	
Augmenting Decompiler Output with Learned Variable Names and Types Distinguised Paper Award	USENIX 2022
Qibin Chen, <i>Jeremy Lacomis</i> , Edward J. Schwartz, Claire Le Goues, Graham Neubig, Bogda	n Vasilescu
 Introduced the Decompiler variable ReTYper (DIRTY), a Transformer-based neural network model designed to recover both semantic and syntactic variable types in decompiled code 	
 Collected the Dataset for Idiomatic ReTyping (DIRT), a dataset of nearly 1 million public C functions for training models for renaming and retyping variables 	
DIRE: A Neural Approach to Decompiled Identifier Naming	ASE 2019
Jeremy Lacomis , Pengcheng Yin, Edward J. Schwartz, Miltiadis Allamanis, Claire Le Goues, Graham Neubig, Bogdan Vasilescu	
 Introduced the Decompiled Identifier Renaming Engine (DIRE), a technique for assigning meaningful names to decompiled variables using neural network tech- niques 	
 Presented a novel technique for generating corpora suitable for training both lex- ical and graph-based probabilistic models of variable names in decompiled code 	
Projects	
DIRTY github.	com/CMUSTRUDEL/DIRTY
 A Transformer-based neural network model designed to recover both semantic and syntactic variable types in decompiled code 	
 Configurable to also predict variable names at the same time 	
 Tools Used: Python, PyTorch, Hex-Rays 	
DIRE github	.com/CMUSTRUDEL/DIRE 🗹
 A tool for assigning meaningful names to decompiled variables using neural network techniques 	
 Tools Used: Python, PyTorch, Hex-Rays 	

Professional Service and Affiliations _____

Selection Committee Chair, REUSE@CMU	2019 - 2023
Mentor, SCS Graduate Application Support Program	2020
Member, ISR DEI Committee	2020 - 2023
Journal Referee, Automated Software Engineering	2024

References _____

Claire Le Goues, Professor of Computer Science: Carnegie Mellon University *clegoues@andrew.cmu.edu* **Zachary Fry**, Senior Scientist III: GrammaTech *zfry@grammatech.com*