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The Real Story of Stuxnet

How Kaspersky Lab tracked down the malware that

stymied Iran’s nuclear-fuel enrichment program

By David Kushner

the walls. A life-size Batman doll
seem no different than any other
front line of a war—a cyberwar,

where most battles play out not in
remote jungles or deserts but in

Computer cables snake across the
floor. Cryptic flowcharts are scrawled
across various whiteboards adorning

stands in the hall. This office might

geeky workplace, but in fact it’s the
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Abstract—The reengineering of legacy code is a tedious
endeavor. Automatic transformation of legacy code from an old
technology to a new one preserves potential problems in legacy
code with respect to obsolete, changed, and new business cases.
On the other hand, manual analysis of legacy code without
assistance of original developers is time consuming and error-
prone. For the purpose of reengineering PL/SQL legacy code in
the steel making domain, we developed tool support for the
reverse engineering of PL/SQL code into a more abstract and
comprehensive representation. This representation then serves as
input for stakeholders to manually analyze legacy code, to
identify obsolete and missing business cases, and, finally, to
support the re-implementation of a new system. In this paper we
briefly introduce the tool and present results of reverse
engineering PL/SQL legacy code in the steel making domain. We
show how stakeholders are supported in analyzing legacy code by
means of general-purpose analysis techniques combined with
domain-specific representations and conclude with some of the
lessons learned.

Keywords—reverse engineering; program comprehension;
source code analysis

Michael Moser and Josef Pichler

Software Analytics and Evolution
Software Competence Center Hagenberg GmbH
4232 Hagenberg, Austria
michael.moser@scch.at, josef.pichler@scch.at

e Changes in business cases over the last years were not
reflected in verification logic of the legacy code.

e For a new production plant, additional requirements
must be incorporated.

e The maintenance of the legacy programs was
complicated by the retirement of original developers.

e Legacy code is not extensible in a safe and reliable way.

e Stakeholders estimated high effort for manual analysis
of the legacy code.

The goal for the reverse engineering tool was to support
stakeholders to comprehend the verification logic implemented
in the legacy programs. Whereas, comprehension requires that
stakeholders can (1) identify the business cases currently
checked by the software as well as that stakeholders are able to
(2) extend the verification logic with respect to new
requirements.

The contributions of this paper are:




40299c:
40299e:
4029al:
4029a3:
4029a5:
4029a8:
4029ab:
4029b2:
402909:
4029DcC:
4029Dbe:
4029c0O:
4029c4:
4029c6:
4029cd:
402900

4029c¢

4029c¢

D) ¢
4029d4:
7

Disassembler

1. jlacomis@gs17931:~/Data/coreutils/debug/src (ssh)

89
83
74
31
48
48
48
48
4d
75
eb
48
74
48
4d
74
89
83
74

fo
e
1d
d2
89
7
89
89
85
14
31
83
O7
89
85
1f
Cc8
el
18

04

d8
7
©5
15
co

e

1d
cO

10

be b8 20 00
ff ba 20 00

ff

a3 b8 20 00

mov
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%esi ,%eax

SOx4 ,%eax

4029cO <main+Ox8bO>
%edx ,%edx

%rbx ,%rax

%rdi

%rax,0x20b8be (%rip)
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2%r8,%r8
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%rbx,0x20b8a3 (%rip)
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20eCX ,%eax
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4029f1 <main+0Ox8el>
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Decompiler

) O % IDA - dd /media/DATA/coreutils/debug/src/dd
File Edit Jump Search View Debugger Options Windows Help
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usage (1) ;

: — J 276 }

., Y 277| v8 = v7 + 1;
EIEIE ' 278| switch ( _ ROR1__ (*ve - 33, 1) )
es:translation_needed, 1 <12 {
loc_402AF1: bl, 40h 280, case 0:
test bl, 40h loc_402AFA .fi_ if | vt[ll I= 111 )
jnz 10c_402€46| Y :ﬁ; goto LABEL_46;

283 if ( ve[2] 1= 110 )
. ] , 284 goto LABEL_46;
___ Yy if ( veE[3] 1= 118 )
ol el G2 286 goto LABEL_46;
2B vd = wvé [4];
loc 402AFA: : ff-.;: if ( v3 )
test  bl, 20h { o
jz loc_402CB1 ir (wvs 1= 61 )
25 goto LABEL_46;
}

— * .??% conversipnsfmask |= parse_symbols (vi, conversions, 0, "invalic
il = 2: goto LABEL_90;
£ 2 case 3:

;Eil rath[ra;§01°W&r_lOC 236 if ( v6[1] 1= 102 )
: r ~ g . .

mov rcx, OFFFFFFFFFFFFFFOOR =7 ”lgoi_:o”??gllﬂf_aiﬁ.
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| | 301 if ( vliz == 108 && v&6[3] == 97 && v&[4] == 103 )
— Yy 202 b ois = vers)
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Decompiler
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}
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Decompiler

usage (1) ;
}
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case 0:

if ( ve[1] I= 111
goto LABEL_ 46;

if ( we[2] I= 110
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The problem:

Decompilers are typically unable to
assign meaningful names to variables




Today

Decompiler output =———) Refactored decompiler output

void *xfile_mmap(int V1, int V2) void *xfile_mmap(int fd, int size)
{ {

void *V3; void *xret;

V3 = mmap(6, V2, 1, 2, V1, 0); ret = mmap(0, size, 1, 2, fd, 0);
if (V3 == (void x) -1) { if (ret == (void x) -1) {

perror ("mmap") ; perror ("mmap") ;

exit(1l); exit(1);
¥ }

return V3; return ret;




Today

Decompiler output =———) Refactored decompiler output

void *xfile_mmap(int void *file_mmap(int int size)
{ {

voild %V3; vold x*ret;

V3 = mmap(0, V2, 1, 2, 0); ret = mmap(0, size, 1, 2,

if (V3 == (void %) -1) { if (ret == (void x) -1) {
perror ("mmap") ; perror ("mmap") ;
exit(1); ex1t(1);

1 }

return V3; return ret;




Today

Decompiler output =——) Refactored decompiler output

void *xfile_mmap(int V1, '|nt void *xfile_mmap(int fd, int
1 {

voild %V3; vold x*ret;

V3 = mmap(@,@ 1, 2, V1, 0); ret = mmap(@, 1, 2, fd, 0);

if (V3 == (void %) -1) { if (ret == (void %) -1) {
perror ("mmap") ; perror ("mmap") ;
exit(1); ex1t(1);

1 }

return V3; return ret;




Today

Decompiler output =———) Refactored decompiler output

void *file_mmap(int V1, int V2) void *xfile_mmap(int fd, int size)

{
void @

(::): mmap(0, V2, 1, 2, V1, 0); mmap(0, size, 1, 2, fd, 0);
if (V3)== (void ) -1) { if (ret)== (void %) -1) {

perror ("mmap") ; perror ("mmap") ;

ex1t(1l); ex1t(1l);
} }

retu rn@ return

} }




up fo 74%

recovery of original source code names
on an open-source GitHub corpus




Why does it work?



rinciple: Software is "natural”

(2012 International Conference on Software Engineering)

Abram Hindle, Earl Barr, Zhendong Su
Dept. of Computer Science
University of California at Davis
Davis, CA 95616 USA
{ajhindle,barr,su}@cs.ucdavis.edu

Abstract—Natural languages like English are rich, complex,
and powerful. The highly creative and graceful use of languages
like English and Tamil, by masters like Shakespeare and
Avvaiyar, can certainly delight and inspire. But in practice,
given cognitive constraints and the exigencies of daily life, most
human utterances are far simpler and much more repetitive
and predictable. In fact, these utterances can be very usefully
modeled using modern statistical methods. This fact has led
to the phenomenal success of statistical approaches to speech
recognition, natural language translation, question-answering,
and text mining and comprehension.

We begin with the conjecture that most software is also

On the Naturalness of Software

Mark Gabel
Dept. of Computer Science
The University of Texas at Dallas
Richardson, TX 75080 USA
mark.gabel @utdallas.edu

Prem Devanbu
Dept. of Computer Science
University of California at Davis

Davis, CA 95616 USA
devanbu@cs.ucdavis.edu

efforts in the 1960s. In the ’70s and ’80s, the field was re-
animated with 1deas from logic and formal semantics, which
still proved too cumbersome to perform practical tasks at
scale. Both these approaches essentially dealt with NLP from
first principles—addressing language, 1n all its rich theoretical
glory, rather than examining corpora of actual utterances, i.e.,
what people actually write or say. In the 1980s, a fundamental
shift to corpus-based, statistically rigorous methods occurred.
The availability of large, on-line corpora of natural language
text, including “aligned” text with translations in multiple

1 B | Y <N TNNY Y




Recall

Decompiler output =———) Refactored decompiler output

void *xfile_mmap(int V1, int V2) void *xfile_mmap(int fd, int size)
{ {

void *V3; void *xret;

V3 = mmap(6, V2, 1, 2, V1, 0); ret = mmap(0, size, 1, 2, fd, 0);
if (V3 == (void x) -1) { if (ret == (void x) -1) {

perror ("mmap") ; perror ("mmap") ;

exit(1l); exit(1);
¥ }

return V3; return ret;




ldea:

Learn typical variable names in a given context
from examples ... many many examples

It software is repetitive, so are names

int main(int




ldea:

Learn typical variable names in a given context
from examples ... many many examples

It software is repetitive, so are names

int main(int



ldea:

Learn typical variable names in a given context
from examples ... many many examples

It software is repetitive, so are names

int main(int argc



Good news:
We can generate arbitrarily many examples

GitHub () + Compiler/Decompiler 8 + Time =2

Source code with -— Decompiler output with
meaningful names placeholder names



Corpus Construction

Original Source Decompiled Code
ol N emacs 381 oM N emacs 381
1#inc lude <stdio.h> 1#inc lude <stdio.h>
2 2
3int main() { 3int main() {
4 1int x = 0; 4 1int vl = 0;
5 1nt y = 0; 5 1nt v2 = 0;
6 while (x < 100) A 6 while (vl < 100) {
7 printf("sd\n", Xx); 7 printf("sd\n", v1);
3 X++: 3 v1++:
9 } 9 }
10 return vy; 10 return v2;

-UUU:**—-F1 count.c ALl (11,1) -UUU:**—-F1 count.c ALl (11,1)

2]



Corpus Construction

Original Source Decompiled Code
ol N emacs 381 oM N emacs 381
1#1nc lude <stdio.h> 1#1nc lude <stdio.h>
2 2
3int main() { 31nt main() {
4 int - = 0;
5 int - = 0;
6 while (x < 100) A 6 whlle (vl < 100) {
7 printf("sd\n", Xx); 7 printf("%sd\n", v1);
3 X++: 3 v1++:
9 1} 9 }
10 return vy; 10 return v2;

11}

-UUU:**—=F1 count.c ALl (11,1) -UUU:**——F1 count.c ALl (11,1)

yy.



Difficulty: Decompilation Changes Structure

Original Source Decompiled Code
N N emacs 381
1#1nc lude <stdio.h> X| Pseudocode-A
2 1int _ cdecl main(int argc, const char **arg
2ln§n$ai’n£)0f signed int i; // [rsp+8h] [rbp—8h]
5 1nt y = 0, for (i = 0; i < 100; ++i )
6 while (x < 100) { - printf("%d\n", (unsigned int)i, envp);
7 printf("sd\n", x); 8} return 0;
3 X++: |
9 }
10 return y;
1 1} 00000F44 _main:& (100000F44)

-UUU:**%——F1 count.c All (11,1)

4

23



Difficulty: Decompilation Changes Structure

Original Source Decompiled Code

0 emacs 381
1#1nc lude <stdio.h>

int cdecl main(int argc,

signed int i; // [rsp+8h] [rbp-8h]

int main() {

5 1int y = 0; for (i = 0; i < 100; ++i )

6 while (x < 100) { | printf ("%d\n", (unsigned int)i, envp);
7 printf("%sd\n", Xx); 8/} return 0;

3 X++:

9 }

10 return y;

1 1 } 000C0OF44 main:s8 (10000C0F44)

-UUU:**—-F1 count.c ALl (11,1)

4

Different function signatures o



Difficulty: Decompilation Changes Structure

Original Source Decompiled Code
0 emacs U381
1#1nc lude <stdio.h> % Pseudocode-A
2 ain (i argc, const char **arg
1nt x = 0;
int y = 0;
C 4 ’ J) 4
7 printf("%sd\n", Xx);
8 X++;

000C0OF44 main:s8 (10000C0F44)
4

-UUU:**%—=F1 count.c ALl (11,1)

Different numbers of variables e



Difficulty: Decompilation Changes Structure

Original Source Decompiled Code

0 emacs 381

1#1nc lude <stdio.h> % Pseudocode-A

? 1int  cdecl main(int argc, const char **arg

: . 2{

ilninﬁaini)gf 3| signed int i; // [rsp+8h] [rbp-8h]
SR for (

while (x < 100) s

return 0O;

/ MI vy SA" BL W B B R AN A

8 X++;

9 }
10 return y;
11}

-UUU:**%—=F1 count.c ALl (11,1)

Different types of loops i



Difficulty: Decompilation Changes Structure

Original Source Decompiled Code
N N emacs 381
1#1nc lude <stdio.h> X| Pseudocode-A
2 1int _ cdecl main(int argc, const char **arg
2ln§n$ai’n£)0f signed int i; // [rsp+8h] [rbp—8h]
5 1nt y = 0, for (i = 0; i < 100; ++i )
6 while (x < 100) { - printf("%d\n", (unsigned int)i, envp);
7 printf("sd\n", x); 8} return 0;
3 X++: |
9 }
10 return y;
1 1} 00000F44 _main:& (100000F44)

-UUU:**%——F1 count.c All (11,1)

4

27



Alignment

Two different loops.

28



Alignment

Two different loops. Same assembly code.

int i, z: varl = dword ptr -8
for (i = @3 i < 103 i++) { var2 = dword ptr -4
Z += 1; 39 0 o s
1 mov [rbp+var2], ©
jmp loc_4a5
loc 49B:
int vl, v2; mov eax, [rbp+var2]
vl = 0; add [rbptvarl], eax
while (vl < 10) { add [rbp+var2], 1
v2 += vi; loc_4a5:
V1++; cmp [rbp+var2], 9
} jle loc_49b




Alignment

Key insight: Operations on variables and their offsets are the same

492 :
bloc

]{)\(4 9 ; :) @ﬁ :)

/ \ % X 4109 - ‘{/ 4\Al : 492
479 : 49E : 492 : 492 : [ )[ ' ) ( : (
sle block) |preinc)| as g
sle block vl num O

X ¥ X\ / ¢ ¢

4A5 . 4A5 . 49E : 4A1 : 4A5: |( 4AS5.: 49E . 4A1 . 492
vl num 9 expr | (preinc i num 9 )| expr i i

Yy Y

49E . 4A1 . 49E .
asgadd ) vl asgadd

)
\

92:
um O

¥ X ¥ X
49E : 49Kk : 49K : 49E :
v2 vl ]

30



4A5 ,:
vl

Alignment

492 :
vl

4Ai :
vl

49E:

4A5:'

4A1 :

492 :

49E:

Key insight: Operations on variables and their offsets are the same

31



Learning from examples
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Recall:
Names are repetitive in a given context

int main(int argc



Running example

charx mystrcopy(char *VAR1l, char *VAR2)({
char *result;
if (VAR1 && VAR2)
result = strcopy(VAR1l, VAR2);
else

result = OLL;
return result;

}

34



charx mystrcopy(char *VAR1, char *VAR2){

Code can be a sequence of  [REEECHSE
. if (VAR1 && VAR2)
IeX’CaI ,'Ol(ens e result = strcopy(VAR1l, VAR2);
else
result = OLL;
. Or Synfax free return result;
(;ame:bk§§trcop;)
char * mystrcopy |

( char * VARL , ... ///,,,,{ i
CN 2N

4 VAR1 R (VARz) (result) ) call J\ (result) (OLLJ
K:cype: char f)

strcopy) (VARl) (VARZ)

35



Encoder

DIRE Neural Architecture

Decoder

36



Encoder

DIRE Neural Architecture
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DIRE Neural Architecture
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Encoder

DIRE Neural Architecture

Look behind and ahead for more context

39



Encoder

DIRE Neural Architecture

char VAR1

Sub-tokenization (reduces vocabulary & training time)

40



DIRE Neural Architecture

41



DIRE Neural Architecture

/ land \ / asg \ asg

2 N\
VARL r? [VARZJ ["95”“] / Cas \ (result] (OLLJ

= [ strcopy JW{ vara I varz)

42



Encoder

DIRE Neural Architecture

block
e: yt opy

,/’ If _\

oy
g VARL 1 (VARZJ [ ] lt oLL
" Jenl o

\)m [ tr py] !VAR1| [VARZ]

“Super node” — different uses of the same variable

43



DIRE Neural Architecture

lt] (OLLJ

\)m [ tr py] !VAR1| [VARZ]

Link function name to arguments

44



DIRE Neural Architecture

45



DIRE Neural Architecture

Decoder

VAR2

46



DIRE Neural Architecture

Decoder

a7



DIRE Neural Architecture

Decoder

48



DIRE Neural Architecture

Encoder Decoder

Code Element
Representations

Identifier
Representations

49



Encoder

DIRE Neural Architecture

Decoder

Code Element
Representations

Identifier
Representations

50



Decoder

DIRE Neural Architecture

dest— Addr— @
Representations

Idenhﬂet VAR1
Representations

VAR1 VAR1 VAR2

Sl



Encoder

DIRE Neural Architecture

Decoder

Code Element
Representations

Identifier
Representations

52



Decompiler Variable

How good are the renamings?



Decompiler Variable

Assumption:
Original (human-written) names are good

How many can we recover?



() Dataset
® 164,632 unique x86-64 binaries

¢ 1,259,935 decompiled functions
® Split by binary into test/training/validation

® Open dataset, link in paper/on ASE site

S35



Variable Recovery Rate (%)

DIRE Lexical Structural Prior Work™

74.3 /2.9 64.6 16.2

*Meaningful Variable Names for Decompiled Code: A Machine Translation Approach,
A. Jaffe, J. Lacomis, E. J. Schwartz, C. Le Goues, and B. Vasilescu, in ICPC, 2018

56



Variable Recovery Rate (%)

DIRE Lexical Structural | Prior Work™

74.3 /2.9 64.6 16.2

*Meaningful Variable Names for Decompiled Code: A Machine Translation Approach,
A. Jaffe, J. Lacomis, E. J. Schwartz, C. Le Goues, and B. Vasilescu, in ICPC, 2018
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Variable Recovery Rate (%)

DIRE Lexical Structural | Prior Work™

74.3 /2.9 64.6 16.2

*Meaningful Variable Names for Decompiled Code: A Machine Translation Approach,
A. Jaffe, J. Lacomis, E. J. Schwartz, C. Le Goues, and B. Vasilescu, in ICPC, 2018
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Example

file *xf_open(char x*x

int fd;

if (1V2)

return fopen(xV1,

1f (* 1= 119)

assert_fail("fopen'")
fd = open(xV1l, 577, 384);
if (fd >= 0)

return reopen(fd,
else

return 0;

s Cchar *V2,

)3

1
2
3
4
5]
6|
7|
8|
9| )3
10|

11|
12| }

int

)

Developer Lexical Structural DIRE
Vi filename file fname filename
V2 mode name oname mode
V3 1dis_private mode flags create

59



Decompiler DIRE Neural Architecture

[ ] X\ IDA - dd /media/DATA/coreutils/debug/src/dd

E-ile Edit Jump Search View Debugger Options Windows Help Encoder Decoder

g EH = Bafn @ & 3 v B @ of gf @ FvF g X  » @D O)|Nodebugger v | % || B E
w0 e : v

Library function Jll Regular function Jll Instruction Data Unexplored External symbol

[[F] IDA View-A 0@ @ [F] Pseudocode-A 0@
= usage (1) ; =

2 = + 1;
78 switch ( __ROR1__ (* - 93, 1) )
cs:translation_needed, 1 2739 {
loc_402AF1: bl, 40h 28 case 0:
test bl, 40h j loc_402AFA 281 if ( [1] 1= 111 )
jnz loc_402C46 282 ) goto LABEL_46;
283 if ( [2] 1= 110 )
goto LABEL_46;
if ( [3] I= 118 )
goto LABEL_46;
2 = [4];
loc_402AFA: 288 if ( )
test bl, 20h 282 t
jz loc_402CB1 25 if ( 1= 61 )
291 goto LABEL_46;
}

conversions_mask |= parse_symbols (v@, conversions, 0, "invalic
goto LABEL_350;

25 case 3:
ctype_tolower_loc X
rax {Ea;] - _U, if [1] 1= 102 )
rcx, OFFFFFFFFFFFFFF00h <3 goto LABEL_46;

Code Element
Representations

Identifier
Representations

§ Py 29 = [21;
66h, 66h, 66h, 66h, 2Eh aq - -
word ptr [rax+rax+00000000h] aor it k& 1= 61)

== 108 && v6[3] == 97 && v&6[4] == 103 )

== 61 )
loc_402C46:
put_file[rex]| [call ctype_toupper_loc

-
100.00% (3396,12163) (583,8) 00002110 000CO000CC402110: main

! »
[=] Output window 0@
60E608: usiné éuessed t}ie ::int64 cache:round:o:§endiné; =

i

Python

AU: idle Down Disk: 406GB

Today STRJDEL

SOCIO-TECHNICAL RESEARCH
USING DATA EXCAVATION LAB

Decompiler output =) Refactored decompiler output . b
squaresla
void sFilemap(int Vi, int v2) [ void *file mmap(int fd, int size) Jeremy Lacomis qyarest

{ { . .
void %V3; void xret; u IIGCOmIS@CmU.edU

V3 = mmap(0, V2, 1, 2, Vi, 0); ret = mmap(0, size, 1, 2, fd, 0);

if (V3 == (void x) -1) { if (ret == (void x) -1) { y @iIGCOmiS

Software Engineering Institute
Carnegie Mellon

perror ("mmap") ; perror ("mmap") ;

} exit(1l); } exit(1l); 6 ieremy’acomiS.Com .79? NEU[AB

return V3; return ret;

Microsoft:

Research
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that the initial guess is good enough. Indee d
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will always ?onYerfdvgnce the rate of convergence of most algorithmg, Can
Thi even determmel;::l veremphasized, however, how crucially success depeng
g t 0 145 . 5ye o S o
o . uess for the solution, especially for multidimensiona] Probe
L having 2 good ﬁrstg ssually depends on analysis rather than numerics Carefms'
col : ial beginning : e o ul]
e malfi e‘;“:;iu al eitimates reward you not only with re;;uce:1 ;O’Ppmauon‘al effort, bug
i 5 ith understanding and increased self-esteertl. ] E;m tg' i n;lotto, B p Urpoge
il uting is insight, not numbers,” is particularly apt in the area of fingjp
g oRconE \d repeat this motto aloud Whenever your program convergeg '\ . 8
cor roots. You shou :CP;  wrong root of a problem, or whenever it fails to oy, ith
we 101
t accuracy, to i initi “Tge
t lt;]::::sg; there is actually no root, or because B0t bt your initig CStimate
o was not sufficiently close to 1 hat do I actuall 5
% s TR nsight is il ety well, Ut what co 1 actually do?” goy
5 E finding, it is possible to give some straightforward answers: 'y,
ma dimensional oot g function looks like befor i i
pre should try to get some idea of what your functi . © IYIng to fing
roots for many different functions, they, you

' :+< roots. If you need to mass-produce .
int ;:fo::;g at lea);t know what some typical members of the ensemble look like. Mo

you should always bracket a root, that is, know that the function changes sign in b

3 :dentified interval, before trying to converge to the root ’s value..
Finally (this is advice with which some daring souls might disagree, by

Hi we give it nonetheless) never let your iteration method get outside of the beg
bracketing bounds obtained at any stage. We will see below that some pedagogically
important algorithms, such as secant method or Newton-.Raphson, can violate thjg
% last constraint, and are thus not recommended unless certain fixups are implemene
Multiple roots, or very close roots, are a real problem, especially if the
multiplicity is an even number. In that case, there may be no readily apparent
sign change in the function, so the notion of bracketing a root — and maiitaining
the bracket — becomes difficult. We are hard-liners: we nevertheless insist op
bracketing a root, even if it takes the minimum-searching techniques of Chapter 1
to determine whether a tantalizing dip in the function really does cross zero or not.
(You can easily modify the simple golden section routine of §10.1 to return early
if it detects a sign change in the function. And, if the minimum of the function is

exactly zero, then you have found a double root.)

As usual, we want to discourage you from using routines as black boxes without
understanding them. However, as a guide to beginners, here are some reasonzble
starting points:

,':5 e Brent’s algorithm in §9.3 is the method of choice to find a bracketed root
of a genc?ral’one-flimc?nsional function, when you cannot easily compute
the function’s derivative. Ridders’ method (§9.2) is concise, and a close

3 competitor. -

. . s . . 7

: o ;XTH )lfl(i)uhcan compute the function’s derivative, the routine rtsafe in
: : (; wboc (cj:on'lbmes the Newton-Raphson method with some bookkeep-

c € on bounds, 1s recommended. Again, you must first bracket your root.

° 1l:orc;tcso of pOlz:gmials are a special case. Laguerre’s method, in §9.5,
mmen as a startin : = ar

ill-conditioned! VArting point. - Beware: Some polynomials are

2 ; ?;?g;;_g)r lgmltidimensional. problems, the only elementary method is

aphson (89.6), which works very well if you can supply a
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ood first guess of the solution. Try it. Then read the more advanced
material in §9.7 for some more complicated, but globally more convergent,
alternatives. :
Avoiding implementations for specific computers, this book must generally
ar of interactive or graphics-related routines. We make an exception right
following routine, which produces a crude function plot with interactively
can save you a lot of grief as you enter the world of root finding.

er Cle

sfc
ow- The

N

de <gtdio. h>
ISCR 60
JSCR 21

jnclu Number of horizontal and vertical positions in display.

#
'def ine

gdefine X
gdefine FF

.4 scrsho(float (*£x) (float))
Ay tive CRT terminal use. Produce a crude graph of the function £x over the prompted-

For interac ; : - :
o interval x1 ,X2. Query for another plot until the user signals satisfaction.
0

{

’x’

int jz,j,i; :
float ysml,ybig,x2,x1,x,dyj,dx,y[ISCR+1];
char scr [ISCR+1] [JSCR+1] ;

for () { y
rintf ("\nEnter x1 x2 (x1=x2 to stop):\n"); Query for another plot, quit
scanf ("%4f %f",&x1,&x2); if x1=x2.

if (x1 == x2) break;
for (j=1;j<=JSCR;j++)
scr[1] [jl=scr[ISCR] [j1=YY;
for (i=2;i<=(ISCR-1);i++) {
scr[i] [1]=scr[i] [JSCR]=XX;
for (j=2;j<=(JSCR-1);j++)
scr[i] [j1=BLANK;

Fill vertical sides with character '1’.

Fill top, bottom with character '-’.
Fill interior with blanks.

}
dx=(x2-x1)/(ISCR-1);
x=x1;

ysml=ybig=0.0; Limits will include 0.

for (i=1;i<=ISCR;i++) { Evaluate the function at equal intervals.
y[i]l=(*£fx) (x); Find the largest and smallest val-
if (y[i] < ysml) ysml=y[i]; ues.
if (y[il > ybig) ybig=yl[il;
x += dx;
}
if (ybig == ysml) ybig=ysml+1.0;
dyj=(JSCR-1)/(ybig-ysml) ;
jz=1-(int) (ysml*dyj);
for (i=1;i<=ISCR;i++) {
scr[i] [jz1=ZERO; 0.
j=1+(int) ((y[il-ysml)*dyj);
scr[i] [j]1=FF;

Be sure to separate top and bottom.

Note which row corresponds to 0.
Place an indicator at function height and

iy

printf(" %10.3f ",ybig);

for (i=1;i<=ISCR;i++) printf("%c",scr[i] [JSCR]);

printf ("\n"); '

for (j=(JSCR-1);j>=2;j--) { Display.
printf ("‘/.128" : " n) ; : ‘
for (i=1;i<=ISCR;i++) printf("%c",scrlil(jl);
printf("\n");

}

printf (" %10.3f ",ysml);
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so1 its roots. If you need to mass-produce roots for many different functions, they, you
the should at least know what some typical members ofththefens?mblehlook like. Next,
sci you should always bracket a root, that is, know ttllllat et,unc 110rl CHanges sign in 4p
for identified interval, before trying to converge to the root s vatue.

Finally (this is advice with which some daring souls migh.t disagree, but
Hi we give it nonetheless) never let your iteration method get outside of the peg
bracketing bounds obtained at any stage. We will see below that some pedagogically
important algorithms, such as secant method or Newton-Raphson, can violate this
% last constraint, and are thus not recommended unless certain fixups are implemene
Multiple roots, or very close roots, are a real problem, especially if (he
multiplicity is an even number. In that case, there may be no readily apparent
sign change in the function, so the notion of bracketing a root — and maiitaining
the bracket — becomes difficult. We are hard-liners: we nevertheless insist on
bracketing a root, even if it takes the minimum-searching techniques of Chapter 1
to determine whether a tantalizing dip in the function really does cross zero or not.
(You can easily modify the simple golden section routine of §10.1 to return early
if it detects a sign change in the function. And, if the minimum of the function is
exactly zero, then you have found a double root.)

As usual, we want to discourage you from using routines as black boxes without
und(?rstanding them. However, as a guide to beginners, here are some reasonzble
starting points:

e Brent’s algorithm m §9.3 is the method of choice to find a bracketed root

of a gent?ral’one-c.hmc.ensional function, when you cannot easily compute
the function’s derivative. Ridders’ method (89.2) is concise, and a close

1 competitor. -

>

4 ° ;;’lzeriv )l'lti)uhcan compute the function’s derivative, the routine rtsafe in
i k. bofx (;Ol'l'lbmes the Newton-Raphson method with some bookkeep-

C g ¢, 1S recommended. Again, you must first bracket your root.

% :zorc:jo?xfm pOlzl'ggmials are a special case. Laguerre’s method, in §9.5
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ill-conditioned! VATHDE pomnt. Beware: Some polynomials are
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ood first guess of the solution. Try it. Then read the more advanced
material in §9.7 for some more complicated, but globally more convergent,
alternatives. :
Avoiding implementatlons ff’f specific computers, this book must generally
ar of interactive or graphics-related routines. We make an exception right
following routine, which produces a crude function plot with interactively
can save you a lot of grief as you enter the world of root finding.

er Cle

ste
ow. The

n

de <gtdio. h>

u
#10C72 5 1SCR 60

ini
’d"fin JSCR 21

Number of horizontal and vertical positions in display.

gdefine X

gdefine FF
.4 scrsho(float (*f?;) (float))

vo:interactive CRT terminal use. Produce a crude graph of the function £x over the prompted-

F:r interval x1,x2. Query for another plot until the user signals satisfaction.

int jz’j ’i; g ;
float ysml ,yblg’X2’X1 ,X,dYJ :dx,y[ISCR.+1] $

char scr [ISCR+1] [JSCR+1] ;

for G ;
rintf ("\nEnter x1 x2 (x1=x2 to stop):\n"); Query for another plot, quit

scanf ("4f %Af",&x1,&x2); if x1=x2.
if (x1 == x2) break;
for (j=1;j<=JSCR;j++)
scr [1] [j1=scr [ISCR] [j1=YY;
for (i=2;i<=(ISCR-1);i++) {
scr[i] [1]=scr[i] [JSCR]=XX;
for (j=2;j<=(JSCR-1);j++)
scr[i] [j1=BLANK;

Fill vertical sides with character '1’.

Fill top, bottom with character '-’.
Fill interior with blanks.

}
dx=(x2-x1)/(ISCR-1);
x=x1;

ysml=ybig=0.0; Limits will include 0.

for (i=1;i<=ISCR;i++) { Evaluate the function at equal intervals.
y[il=(*fx) (x); Find the largest and smallest val-

if (y[i] < ysml) ysml=y[il; ues.
if (y[il > ybig) ybig=yl[il;
x += dx;

}

if (ybig == ysml) ybig=ysml+1.0;

dyj=(JSCR-1)/(ybig-ysml) ;
jz=1-(int) (ysml*dyj); Note which row corresponds to 0.

for (i=1;i<=ISCR;i++) { Place an indicator at function height and
scr[i] [jz1=ZERO; 0.
j=1+(int) ((y[il-ysml)*dyj);
scr[i] [j]1=FF;

Be sure to separate top and bottom.

iy

printf(" %10.3f ",ybig);

for (i=1;i<=ISCR;i++) printf ("%c",scr[i] [JSCR]) ;

printf ("\n");

for (j=(JSCR-1);j>=2;j--) { Display.
printf ("%12s8" ," "y
for (i=1;i<=ISCR;i++) printf("%c",scrlil(jl);
printf("\n");

}

printf (" %10.3f ",ysml);
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its roots. If you need to mass-produce roots for many different funCtlons, then you v nteractive CRT terminal use. Produce a crude graph of the function £x over the prompted-
should at least know what some typical members of the ensemble look like. Next for interval x1,x2. Query for another plot until the user signals satisfaction.
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alternatives.
Avoiding implementations for specific computers, this book must generally

clear of interactive'or graphics—related routines. We make an exception right
The following routine, which pfoduces a crude function plot with interactively
an save you a lot of grief as you enter the world of root finding.

int j29j’i; ; |
float ysml,ybig,x2,x1,x,dyj,dx,y[ISCR+1] ;

char SCIr [ISCR+1] [JSCR+1] ;

owever, as a guide to beginners, here are some reasonzble ' i ; X = dx;
e Brent’s algorithm in 89 3 is th ) if (ybig == ysml) ybig=ysml+1.0; Be sure to separate top and bottom.
S nzl;‘:'uomhmm §93ls the method of choice to find a bracketed root -, dyj=(JSCR-1)/(ybig-ysml) ;
theg ’Qne'dﬁ. ”.1‘1?1181.0112_3.1 function, when you cannot easily compute : jz=1-(int) (ysmlxdyj); Note which row corresponds to 0.
the function’s derivative. Ridders’ method (89.2) is concise, and a close N for " (1=1;1<=ISCR;i++) { Place an indicator at function height and
- competitor. - e ‘ ) : . ’ . it scr[i] [jz]=ZERO; 0.
oI ol D e | | ke j=1+(int) ((ylil-ysm)sey));
§9.4, Wi(ch ::]:bmesugﬁ; function’s derivative, the routine rtsafe in e | scr[i] [j1=FF;
o7+ WL LOMOINES the Newton-Raphson meth i e
Raphson method with some bookkeep- BN Drints (" %10.3f ",ybig);
S for (i=1;i<=ISCR;i++) printf("%c",scr [i] [JSCR]) ;

ing on bounds, is recommended, ‘Again, you must first bracket your root. e
~ e printf ("\n");
Display.

* Roots of polynomials are a special cg
Tl oot e starting point. Beware: Some polynomials are il e ;3;;3??&;11;;;?:23)3.") ¢
QFm&lLy,@rm ‘.{" S o : ' t_ for (i-i;.i<=IéCR;i~"-+) printf ("%c",scr[il1 [31);
* Newton-Raphson (19.6), whicn e L 01 clementary method is prinet (Ra);
S o WG WOrks very well if you can supply a o printf(" %10.3f ",ysml);




Preliminary Human Study

1 1nt x = 1;

2 1nt y = 0;

3 while (x<= 5) {
4y += 23

S X += 1;

6 }

7 printf("%d", y);

What is the value of the variable y on line 72
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The uniqueness of the functions matters
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