
DIRE:
A Neural Approach to
Decompiled Identifier Renaming

Jeremy Lacomis, Pengcheng Yin,
Edward J. Schwartz, Miltiadis Allamanis,
Claire Le Goues, Graham Neubig, Bogdan Vasilescu

Reverse Engineering

3

Disassembler

Disassembler

4

Decompiler

5

6

Decompiler

7

Decompiler

The problem:

Decompilers are typically unable to
assign meaningful names to variables

Decompiler output

9

void *file_mmap(int V1, int V2)

{

 void *V3;
 V3 = mmap(0, V2, 1, 2, V1, 0);
 if (V3 == (void *) -1) {
 perror("mmap");
 exit(1);
 } 
 return V3;
}

void *file_mmap(int fd, int size)

{

 void *ret;
 ret = mmap(0, size, 1, 2, fd, 0);
 if (ret == (void *) -1) {
 perror("mmap");
 exit(1);
 } 
 return ret;
}

Today
Refactored decompiler output

10

void *file_mmap(int V1, int V2)

{

 void *V3;
 V3 = mmap(0, V2, 1, 2, V1, 0);
 if (V3 == (void *) -1) {
 perror("mmap");
 exit(1);
 } 
 return V3;
}

void *file_mmap(int fd, int size)

{

 void *ret;
 ret = mmap(0, size, 1, 2, fd, 0);
 if (ret == (void *) -1) {
 perror("mmap");
 exit(1);
 } 
 return ret;
}

V1

V1

fd

fd

Today
Decompiler output Refactored decompiler output

void *file_mmap(int V1, int V2)

{

 void *V3;
 V3 = mmap(0, V2, 1, 2, V1, 0);
 if (V3 == (void *) -1) {
 perror("mmap");
 exit(1);
 } 
 return V3;
}

void *file_mmap(int fd, int size)

{

 void *ret;
 ret = mmap(0, size, 1, 2, fd, 0);
 if (ret == (void *) -1) {
 perror("mmap");
 exit(1);
 } 
 return ret;
}

11

V2

V2

size

size

Today
Decompiler output Refactored decompiler output

void *file_mmap(int V1, int V2)

{

 void *V3;
 V3 = mmap(0, V2, 1, 2, V1, 0);
 if (V3 == (void *) -1) {
 perror("mmap");
 exit(1);
 } 
 return V3;
}

void *file_mmap(int fd, int size)

{

 void *ret;
 ret = mmap(0, size, 1, 2, fd, 0);
 if (ret == (void *) -1) {
 perror("mmap");
 exit(1);
 } 
 return ret;
}

12

ret
ret

ret

ret

V3
V3

V3

V3

Today
Decompiler output Refactored decompiler output

74%up to
recovery of original source code names

on an open-source GitHub corpus

Why does it work?

Key principle: Software is "natural"
(2012 International Conference on Software Engineering)

On the Naturalness of Software

Abram Hindle, Earl Barr, Zhendong Su
Dept. of Computer Science

University of California at Davis
Davis, CA 95616 USA

{ajhindle,barr,su}@cs.ucdavis.edu

Mark Gabel
Dept. of Computer Science

The University of Texas at Dallas
Richardson, TX 75080 USA
mark.gabel@utdallas.edu

Prem Devanbu
Dept. of Computer Science

University of California at Davis
Davis, CA 95616 USA

devanbu@cs.ucdavis.edu

Abstract—Natural languages like English are rich, complex,

and powerful. The highly creative and graceful use of languages

like English and Tamil, by masters like Shakespeare and

Avvaiyar, can certainly delight and inspire. But in practice,

given cognitive constraints and the exigencies of daily life, most

human utterances are far simpler and much more repetitive

and predictable. In fact, these utterances can be very usefully

modeled using modern statistical methods. This fact has led

to the phenomenal success of statistical approaches to speech

recognition, natural language translation, question-answering,

and text mining and comprehension.

We begin with the conjecture that most software is also

natural, in the sense that it is created by humans at work,

with all the attendant constraints and limitations—and thus,

like natural language, it is also likely to be repetitive and

predictable. We then proceed to ask whether a) code can

be usefully modeled by statistical language models and b)

such models can be leveraged to support software engineers.

Using the widely adopted n-gram model, we provide empirical

evidence supportive of a positive answer to both these questions.

We show that code is also very repetitive, and in fact even more

so than natural languages. As an example use of the model,

we have developed a simple code completion engine for Java

that, despite its simplicity, already improves Eclipse’s built-in

completion capability. We conclude the paper by laying out a

vision for future research in this area.

Keywords-language models; n-gram; natural language pro-

cessing; code completion; and code suggestion

I. INTRODUCTION

The word “natural” in the title of this paper refers to the
fact that code, despite being written in an artificial language
(like C or Java) is a natural product of human effort. This use
of the word natural derives from the field of natural language
processing, where the goal is to automatically process texts in
natural languages, such as English and Tamil, for tasks such
as translation (to other natural languages), summarization,
understanding, and speech recognition.

The field of natural language processing (“NLP”, see
Sparck-Jones [1] for a brief history) went through several
decades of rather slow and painstaking progress, beginning
with early struggles with dictionary and grammar-based

Abram Hindle is now with University of Alberta, Edmonton.
Mark Gabel was at UC Davis when this work was done.

efforts in the 1960s. In the ’70s and ’80s, the field was re-
animated with ideas from logic and formal semantics, which
still proved too cumbersome to perform practical tasks at
scale. Both these approaches essentially dealt with NLP from
first principles—addressing language, in all its rich theoretical
glory, rather than examining corpora of actual utterances, i.e.,
what people actually write or say. In the 1980s, a fundamental
shift to corpus-based, statistically rigorous methods occurred.
The availability of large, on-line corpora of natural language
text, including “aligned” text with translations in multiple
languages,1 along with the computational muscle (CPU speed,
primary and secondary storage) to estimate robust statistical
models over very large data sets has led to stunning progress
and widely-available practical applications, such as statistical
translation used by translate.google.com.2 We argue that
an essential fact underlying this modern, exciting phase of
NLP is natural language may be complex and admit a great
wealth of expression, but what people write and say is largely
regular and predictable.

Our central hypothesis is that the same argument applies
to software:

Programming languages, in theory, are complex,
flexible and powerful, but the programs that real people
actually write are mostly simple and rather repetitive,
and thus they have usefully predictable statistical proper-
ties that can be captured in statistical language models
and leveraged for software engineering tasks.

We believe that this is a general, useful and practical notion
that, together with the very large publicly available corpora
of open-source code, will enable a new, rigorous, statistical
approach to a wide range of applications, in program analysis,
error checking, software mining, program summarization, and
code searching. This paper is the first step in what we hope

1This included the Canadian Hansard (parliamentary proceedings), and
similar outputs from the European parliament.

2Indeed, a renowned pioneer of the statistical approach, Fred Jelenik, is
reputed to have exclaimed: “Every time a linguist leaves our group, the
performance of our speech recognition goes up!!!” See http://en.wikiquote.
org/wiki/Fred_Jelinek.

Decompiler output

16

Recall
Refactored decompiler output

void *file_mmap(int V1, int V2)

{

 void *V3;
 V3 = mmap(0, V2, 1, 2, V1, 0);
 if (V3 == (void *) -1) {
 perror("mmap");
 exit(1);
 } 
 return V3;
}

void *file_mmap(int fd, int size)

{

 void *ret;
 ret = mmap(0, size, 1, 2, fd, 0);
 if (ret == (void *) -1) {
 perror("mmap");
 exit(1);
 } 
 return ret;
}

Idea:
Learn typical variable names in a given context

from examples … many many examples

If software is repetitive, so are names

int main(int ?

Idea:
Learn typical variable names in a given context

from examples … many many examples

If software is repetitive, so are names

int main(int banana

Idea:
Learn typical variable names in a given context

from examples … many many examples

If software is repetitive, so are names

int main(int argc

Good news:
We can generate arbitrarily many examples

GitHub ! + Compiler/Decompiler ! + Time "

Source code with
meaningful names

Decompiler output with
placeholder names

21

Corpus Construction
Original Source Decompiled Code

22

Corpus Construction
Original Source Decompiled Code

23

Difficulty: Decompilation Changes Structure
Original Source Decompiled Code

24

Difficulty: Decompilation Changes Structure
Original Source Decompiled Code

Different function signatures

25

Difficulty: Decompilation Changes Structure
Original Source Decompiled Code

Different numbers of variables

26

Difficulty: Decompilation Changes Structure
Original Source Decompiled Code

Different types of loops

27

Difficulty: Decompilation Changes Structure
Original Source Decompiled Code

Alignment

28

Two different loops.

int i, z;
for (i = 0; i < 10; i++) {
 z += i;
}

int v1, v2;
v1 = 0;
while (v1 < 10) {
 v2 += v1;
 v1++;
}

Alignment

29

Two different loops.

int i, z;
for (i = 0; i < 10; i++) {
 z += i;
}

int v1, v2;
v1 = 0;
while (v1 < 10) {
 v2 += v1;
 v1++;
}

var1 = dword ptr -8
var2 = dword ptr -4
 ;;...
 mov [rbp+var2], 0
 jmp loc_4a5
loc_49B:
 mov eax, [rbp+var2]
 add [rbp+var1], eax
 add [rbp+var2], 1
loc_4a5:
 cmp [rbp+var2], 9
 jle loc_49b

Same assembly code.

Alignment

30

Key insight: Operations on variables and their offsets are the same

DIRE: A Neural Approach to Decompiled

Identifier Naming

Jeremy Lacomis
⇤
, Pengcheng Yin

⇤
, Edward J. Schwartz

†
, Miltiadis Allamanis

‡
,

Claire Le Goues
⇤
, Graham Neubig

⇤
, Bogdan Vasilescu

⇤

⇤
Carnegie Mellon University. {jlacomis, pcyin, clegoues, gneubig}@cs.cmu.edu; vasilescu@cmu.edu

†
Carnegie Mellon University Software Engineering Institute. eschwartz@cert.org

‡
Microsoft Research. miallama@microsoft.com

492:
block

49B:
while

49E:
block

4A9:
sle

4A5:
num 9

4A5:
v1

4A1:
preinc

4A1:
v1

492:
asg

492:
v1

492:
num 0

49E:
expr

49E:
asgadd

49E:
v2

49E:
v1

(a) AST without DWARF.

492:
for

49E:
block

4A9:
sle

4A1:
preinc

4A1:
i

492:
asg

492:
i

492:
num 0

49E:
expr

49E:
asgadd

49E:
z

49E:
i

4A5:
num 9

4A5:
i

(b) AST with DWARF.

Fig. 1: Decompiler ASTs for the code in Fig. 2. Hexadecimal

numbers indicate the location of the disassembled instruction

used to generate the node. While the ASTs are different,

operations on variables and their offsets are the same, enabling

mapping between variables (i.e., v17!i and v27!z).

31

492:
block

49B:
while

49E:
block

4A9:
sle

4A5:
num 9

4A5:
v1

4A1:
preinc

4A1:
v1

492:
asg

492:
v1

492:
num 0

49E:
expr

49E:
asgadd

49E:
v2

49E:
v1

(a) AST without DWARF.

492:
for

49E:
block

4A9:
sle

4A1:
preinc

4A1:
i

492:
asg

492:
i

492:
num 0

49E:
expr

49E:
asgadd

49E:
z

49E:
i

4A5:
num 9

4A5:
i

(b) AST with DWARF.

Alignment
Key insight: Operations on variables and their offsets are the same

Learning from examples

Decompiled
Identifier
Renaming
Engine

!
Decompiler

#
DIRE

Binary Meaningful
Variable Names

Recall:
Names are repetitive in a given context

int main(int argc

Running example

char* mystrcopy(char *VAR1, char *VAR2){
 char *result;
 if (VAR1 && VAR2)
 result = strcopy(VAR1, VAR2);
 else
 result = 0LL;
 return result;
}

34

Code can be a sequence of
lexical tokens …

block
name: mystrcopy

If

asg asg

call

land

result 0LL

VAR2VAR1strcopy

resultVAR2VAR1
type: char *

char * mystrcopy
(char * VAR1 , ...

char* mystrcopy(char *VAR1, char *VAR2){
 char *result;
 if (VAR1 && VAR2)
 result = strcopy(VAR1, VAR2);
 else
 result = 0LL;
 return result;
}... or a syntax tree

35

Encoder

DIRE Neural Architecture
Decoder

Structural Encoder (GGNN)

Lexical Encoder (LSTM)

Sequential Decoder with
Attention

36

Encoder

DIRE Neural Architecture

Structural Encoder (GGNN)

Lexical Encoder (LSTM)

37

Encoder

Structural Encoder (GGNN)

Lexical Encoder (LSTM)

h1 h2 h3 h4 h5 h6 h7 h8 h9 . . .

char * my (char_str _copy * VAR1

38

DIRE Neural Architecture

Encoder

Structural Encoder (GGNN)

Lexical Encoder (LSTM)

h1 h2 h3 h4 h5 h6 h7 h8 h9 . . .

char * my (char_str _copy * VAR1

39

DIRE Neural Architecture

Look behind and ahead for more context

Encoder

Structural Encoder (GGNN)

Lexical Encoder (LSTM)

h1 h2 h3 h4 h5 h6 h7 h8 h9 . . .

char * my (char_str _copy * VAR1

40

DIRE Neural Architecture

Sub-tokenization (reduces vocabulary & training time)

Encoder

Structural Encoder (GGNN)

Lexical Encoder (LSTM)

41

DIRE Neural Architecture

Encoder

Structural Encoder (GGNN)

Lexical Encoder (LSTM)

42

DIRE Neural Architecture

block
name: mystrcopy

If

asg asg

call

land

result 0LL

VAR2VAR1strcopy

resultVAR2VAR1
type: char *

Encoder

Structural Encoder (GGNN)

Lexical Encoder (LSTM)

43

DIRE Neural Architecture

block
name: mystrcopy

If

asg asg

call

land

result 0LL

VAR2VAR1strcopy

resultVAR2VAR1
type: char *

VAR1

“Super node” — different uses of the same variable

Encoder

Structural Encoder (GGNN)

Lexical Encoder (LSTM)

44

DIRE Neural Architecture

block
name: mystrcopy

If

asg asg

call

land

result 0LL

VAR2VAR1strcopy

resultVAR2VAR1
type: char *

VAR1

Link function name to arguments

Encoder

Structural Encoder (GGNN)

Lexical Encoder (LSTM)

45

DIRE Neural Architecture

Encoder Decoder

Structural Encoder (GGNN)

Lexical Encoder (LSTM)

Sequential Decoder with
Attention

VAR1 VAR2

VAR1 VAR2

VAR1 VAR2

46

DIRE Neural Architecture

Encoder Decoder

Structural Encoder (GGNN)

Lexical Encoder (LSTM)

Identifier
Representations

Sequential Decoder with
Attention

47

DIRE Neural Architecture

Encoder Decoder

Structural Encoder (GGNN)

Lexical Encoder (LSTM)

Identifier
Representations

Sequential Decoder with
Attention

48

DIRE Neural Architecture

DecoderEncoder

Structural Encoder (GGNN)

Lexical Encoder (LSTM)

Identifier
Representations

Sequential Decoder with
Attention

Code Element
Representations

49

DIRE Neural Architecture

Encoder

Structural Encoder (GGNN)

Lexical Encoder (LSTM)

Decoder

Sequential Decoder with
Attention

Code Element
Representations

Identifier
Representations

Code Element
Representations

50

DIRE Neural Architecture

Decoder

Sequential Decoder with
Attention

Code Element
Representations

Identifier
Representations

Addr src

VAR1 VAR1 VAR2

Attention

s1 s2 s3 s4

VAR1

dest

. . .

51

DIRE Neural Architecture

DecoderEncoder

Structural Encoder (GGNN)

Lexical Encoder (LSTM) Code Element
Representations

Identifier
Representations

Sequential Decoder with
Attention

52

DIRE Neural Architecture

!

Decompiler

#

DIRE
Binary Variable

Names

How good are the renamings?

!

Decompiler

#

DIRE
Binary Variable

Names

Assumption:
Original (human-written) names are good

How many can we recover?

! Dataset
•164,632 unique x86-64 binaries

•1,259,935 decompiled functions

•Split by binary into test/training/validation

•Open dataset, link in paper/on ASE site

55

Variable Recovery Rate (%)

56

DIRE Lexical Structural Prior Work*

74.3 72.9 64.6 16.2

*Meaningful Variable Names for Decompiled Code: A Machine Translation Approach,
A. Jaffe, J. Lacomis, E. J. Schwartz, C. Le Goues, and B. Vasilescu, in ICPC, 2018

Variable Recovery Rate (%)

57

DIRE Lexical Structural Prior Work*

74.3 72.9 64.6 16.2

*Meaningful Variable Names for Decompiled Code: A Machine Translation Approach,
A. Jaffe, J. Lacomis, E. J. Schwartz, C. Le Goues, and B. Vasilescu, in ICPC, 2018

Variable Recovery Rate (%)

58

DIRE Lexical Structural Prior Work*

74.3 72.9 64.6 16.2

*Meaningful Variable Names for Decompiled Code: A Machine Translation Approach,
A. Jaffe, J. Lacomis, E. J. Schwartz, C. Le Goues, and B. Vasilescu, in ICPC, 2018

Example
 1| file *f_open(char **V1, char *V2, int V3) {
 2| int fd;
 3| if (!V3)
 4| return fopen(*V1, V2);
 5| if (*V2 != 119)
 6| assert_fail("fopen");
 7| fd = open(*V1, 577, 384);
 8| if (fd >= 0)
 9| return reopen(fd, V2);
10| else
11| return 0;
12| }

Developer Lexical Structural DIRE

V1 filename file fname filename

V2 mode name oname mode

V3 is_private mode flags create

59

Jeremy Lacomis
$ jlacomis@cmu.edu
" @jlacomis
% jeremylacomis.com

BONUS SLIDES

62

63

64

65

Preliminary Human Study

•Presented users with short snippets (<50 lines) of
decompiled code, asked to perform various maintenance
tasks, graded and timed:

1 int x = 1;
2 int y = 0;
3 while (x<= 5) {
4 y += 2;
5 x += 1;
6 }
7 printf("%d", y);

What is the value of the variable y on line 7?

The amount of training data matters

67

The uniqueness of the functions matters

68

