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Introduction

As computation continues to migrate from personal computers to large-
scale data centers the energy required to run computers has become a
significant economic and environmental concern. For example, between
2005 and 2010 data center electricity consumption grew by 24%, and by
2014 data centers accounted for 1.8% of U.S. energy consumption (She-
habi et al. 2016). Although this large energy footprint has led to some
mitigation efforts, energy consumption in data centers continues to rise.
Current estimates project U.S. energy use to increase a further 4% from
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2014 to 2020. In 2016, in anticipation of the possible environmental im-
pact of their growing energy demand, Google announced a $2.5 billion
commitment to the purchase of energy from renewable sources.1

Computer hardware efficiency directly effects data center energy con-
sumption, and this effect is multiplied by the support systems required
for deployment. Mechanical and electrical systems, such as lighting,
cooling, air circulation and uninterruptible power supplies, can quadru-
ple the power required by the computational hardware itself (Hoelzle
and Barroso 2009).

The software running in the center can further multiply energy con-
sumption. For example, data centers must be provisioned with sufficient
hardware to run the desired algorithms in a timely fashion. Algorith-
mic inefficiencies in software implementations can increase run times,
leading to greater emphasis on parallelism to compensate. Contention
for resources such as networks, disks, memory or caches leads to over-
provisioning hardware (Mars et al. 2012). At sufficient scales, hardware
reliability concerns require implementation of redundant resources and
computations—for example, Microsoft implements redundancy for all
customer data in Azure storage accounts to meet the uptime guaranteed
by their Service-Level Agreements.2 Because the load on the support sys-
tems scales with computational load, improving computational efficiency
could significantly reduce overall energy costs of data centers.

The problem of computational energy consumption has typically been
addressed by optimizing hardware (Douglis, Krishnan, and Bershad 1995;
Delaluz et al. 2001; Nowka et al. 2002), compilers (Lee et al. 1997; Hsu
and Kremer 2003; Reda and Nowroz 2012), or cluster scheduling (Mars
et al. 2012), leaving open the question of how to write energy-efficient
applications. These optimizations are largely independent, and energy
reductions from different perspectives are composable to achieve greater

1. https://environment.google
2. https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy
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savings. Reducing software energy use is challenging because it is of-
ten unclear how implementation decisions impact energy consumption,
making it difficult for developers to write programs that minimize energy
use (Manotas, Pollock, and Clause 2014).

In this chapter, we focus on emerging techniques for automatically
reducing energy consumption in existing computer programs. First, we
give an overview of specialized approaches that leverage knowledge about
specific properties of some software. Next, we consider new, more gen-
eral approaches that use insights from evolutionary computation (Schulte
et al. 2014; Dorn et al. 2017). By modifying software and measuring the
difference in energy consumption, these approaches are able to automate
the “change, observe, iterate” loop that a developer might use when she
finds it difficult or impossible to reason about how changes to the soft-
ware will impact performance. These generic techniques are applicable
to many types of software and sometimes reveal new generalizable meth-
ods for optimizing specific types of software.

Reducing Software Energy Consumption

Reducing the energy consumption of a program requires that its execu-
tion be changed in some way. There are three main approaches used
today: semantics-preserving techniques, approximate computing tech-
niques, and techniques based on stochastic search.

Semantics-Preserving Techniques

These techniques require that all transformations to the program pre-
serve input/output behavior that is identical to the original program. For
example, standard compiler optimizations for reducing run-time guaran-
tee that program semantics are not changed. These techniques generate
programs that are correct by construction.
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Instruction Scheduling Techniques

Modern CPU internals are primarily composed of transistors used as
switches. CPUs combine these transistors into small units that perform
simple operations (e.g., addition, division, logical operations), select mem-
ory to operate on, or do basic control and input/output. When a com-
puter is running, the CPU is given instructions that direct the CPU to
combine these units and perform the desired computation.

The transistors inside the CPU account for a majority of its energy
use. There are two types of energy consumption in transistors: static
and dynamic (Niu and Quan 2004). Static energy consumption is the en-
ergy required to hold a transistor at a steady-state, while dynamic en-
ergy consumption is the energy dissipated as heat when a transistor is
switched from one state to another. Although static energy consumption
in modern processors is important, the majority of energy consumption
is dynamic (Sarwar 1997). To minimize dynamic energy consumption,
researchers use instruction scheduling (Lee et al. 1997).

Instruction scheduling techniques reduce the number of times that
transistors change state, thus reducing dynamic energy consumption.
This is accomplished by optimizing the ordering of independent instructions—
instructions that produce the same computation if executed in a different
order—to minimize the number of times that transistors change state.
For example, if a transistor T is used in the independent instructions
I1, I2, and I3 where the values of T are Toff , Ton, and Toff respectively,
the instruction ordering I1 → I2 → I3 requires T to switch twice (Toff →
Ton → Toff ), while the instruction ordering I1 → I3 → I2 only requires T
to switch once (Toff → Toff → Ton). This ordering consumes less dynamic
energy while executing the same instructions and performing the same
computation.

A limitation of instruction scheduling is that any reordered instruc-
tions must be independent of one another, which is often not the case. It
also requires an available energy model for each instruction (as different
transistors may have different dynamic power consumption). As a re-

4



sult, its use has typically been limited to applications where minimizing
energy usage is paramount, such as ultra-low power mobile devices.

Superoptimization

Superoptimization (Massalin 1987; Schkufza, Sharma, and Aiken 2013)
is similar to instruction scheduling, since both reorder low-level instruc-
tions. Superoptimization, however, is more general: instead of consider-
ing specific properties (e.g., reduced switching), it reorders instructions
in any way that preserves semantics, and then performance is measured
empirically. Assuming an effective mechanism to verify functionality,
superoptimization can identify the best sequence of instructions by ex-
haustive enumeration. However, his strategy works only for very short se-
quences of instructions: modern instruction sets are large and exhaustive
search is infeasible for more than a few instructions. Stochastic search
enables these techniques to scale to longer sequences that compute more
complex functions, but cannot guarantee that the best sequence has been
found. Stochastic superoptimization approaches remain constrained by
the verification mechanism, as complex functions are generally difficult
or impossible to verify formally (Rice 1953).

Approximate Computing

Approximate computing relaxes the requirement to preserve exact se-
mantics, allowing a tradeoff between computational accuracy and run-
time or energy consumption (Palem 2014). This tradeoff is analogous to
how lossy compression formats such as MP3 or MPEG4 achieve smaller
file sizes than lossless formats in exchange for reduced output fidelity.
Approximate computing techniques exist for both hardware (Lu 2004;
Gupta et al. 2013; Palem and Lingamneni 2013; Yang, Han, and Lom-
bardi 2015) and software (Han and Orshansky 2013; Venkataramani et
al. 2015). We discuss three approximate computing approaches that are
suitable for software implementation—precision scaling, task skipping, and
loop perforation.
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Precision Scaling

Precision scaling reduces computational cost by modifying the precision
of floating-point variables used to represent real numbers in arithmetic
(Sarbishei and Radecka 2010; Tian et al. 2015). Precision refers to the
number of bits that are used to represent a number in memory: higher-
precision representations use more bits and are more accurate. However,
more bits implies more space in memory, which can affect energy con-
sumption. In certain cases it is possible to adjust the precision of vari-
ables to reduce energy. For example, reducing precision in hardware can
reduce the size of the circuit required for computation, thereby reducing
its power consumption; in software, changing the precision of a variable
can change memory layouts, reducing the time to look up values3 and
decreasing energy usage. However, these effects are difficult to predict
and scaling may have no effect at all.

Task Skipping

Task skipping (Rinard 2006, 2007) reduces energy consumption or run-
time by halting or skipping the execution of tasks in a program when the
results are unneeded. The strategy uses a model to characterize the trade-
off between accuracy and performance to decide if an execution should
be skipped. Before task skipping can be applied, the program must be
manually decomposed into tasks by a developer. This requires program-
mers with domain-specific knowledge to perform a nontrivial amount of
manual work, and sometimes this type of decomposition is not possible
(Tilevich and Smaragdakis 2002). This greatly limits the applicability of
the technique.

3. Frequently-used values are often stored in cache, a special type of extremely fast mem-
ory located inside the CPU itself. Although cache memory is fast, it is expensive and its size
is limited. Larger data might not fit into cache, and can also introduce problems with align-
ment, a topic beyond the scope of this chapter.
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Loop Perforation

Similar to task skipping, loop perforation reduces runtime and energy
consumption by skipping unnecessary computation (Hoffmann et al. 2009;
Sidiroglou-Douskos et al. 2011). In loop perforation, individual itera-
tions of loops are skipped during a calculation. This approach is effective
for algorithms that iteratively improve the accuracy of a computation,
such as spigot algorithms that iteratively compute the digits of π (Rabi-
nowitz and Wagon 1995) or iterative approximations of integrals (Kam-
merer and Nashed 1972). Skipping iterations of these loops produces an
approximate answer with less energy than a fully-precise answer.

Loop perforation has two main advantages over task skipping: (1)
loops do not have to be manually specified by domain experts because
they can be identified easily and automatically; (2) loops are ubiquitous
in software, so there are many more applicable programs for loop per-
foration. However, not all loops are improved with perforation, and in
certain cases loop perforation actually decreases performance. For exam-
ple, a loop might be used to filter a list before it is passed to an expensive
processing step (Hoffmann et al. 2009), so skipping iterations of the filter
loop can actually increase energy consumption.

Energy Reduction using Genetic Improvement

Although these earlier approaches to software energy reduction can be
effective, they either use very limited transformations (e.g., instruction
scheduling and superoptimization) or require programs to have specific
properties (e.g., task skipping). Generally, it is difficult to predict the im-
pact of a given transformation on the behavior and energy consumption
of a program. This difficulty motivates the use of stochastic optimization
methods, such as simulated annealing (Kirkpatrick, Gelatt, and Vecchi
1983), ant colony optimization (Dorigo and Birattari 2011), and genetic
algorithms (GAs) (Holland 1992).

In the following we focus on GAs and related methods, which are
known collectively as evolutionary computation (EC), because they have
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been applied successfully to software modification. A GA takes as in-
put a representation and a fitness funtion. The representation specifies
a set of properties that can be assembled into a chromosome to form a
candidate solution (called an individual). The fitness function computes
the goodness, or fitness, of each individual, returning a numerical rat-
ing. Execution of a GA begins with an initial population of individuals,
either generated randomly or provided by some other means. Each indi-
vidual’s fitness is evaluated and used to stochastically select individuals,
which are then mutated and recombined with other individuals to form
the next generation. Although the details of these transformations vary
according to the specific implementation, there are two main techniques
for creating new individuals from the previous generation: mutation and
crossover. Mutation randomly modifies an individual (e.g., through bit
flips), while crossover recombines the chromosomes from two or more
parents, analogous to crossing over in biology. These processes of fit-
ness evaluation, selection and variation are iterated for many generations,
evolving an improved solution to a problem.

An important subfield of EC is genetic programming (GP) (Koza 1992),
where programs are evolved to approximate the input/output behavior
of a hidden function (a form of function approximation). GP methods
have been applied to several problems in software engineering, such as
repairing bugs (Le Goues et al. 2012), obfuscating code (Petke 2016), and
implementing new functionality (Harman, Jia, and Langdon 2014). In
these examples, GP is used to improve extant software, and the term ge-
netic improvement refers to this class of applications (Langdon 2015).

Energy optimization is, of course, another form of software improve-
ment, and there are several recent efforts along these lines (Schulte et
al. 2014; Bruce, Petke, and Harman 2015; Linares-Vásquez et al. 2015;
Bruce et al. 2018). In these applications, fitness corresponds to energy
reduction, which can be directly measured or modeled. An extension
to this work uses multi-objective optimization to trade off energy and
accuracy, a form of approximate computing. For example, our work
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on PowerGAUGE (Dorn et al. 2017) relaxes the requirement of strict
preservation of semantics to achieve greater energy reductions. Note that
the optimization of software along two dimensions does not return one
“best” implementation, but a set of Pareto optimal (Zitzler et al. 2003)
programs. A program that is Pareto optimal is one for which no other ob-
served program has lower energy consumption without a corresponding
increase in error, nor does another program have a lower error without
an increase in energy consumption. The fitnesses of these Pareto optimal
programs lie on a Pareto frontier, which can be visualized on an error vs.
energy reduction graph, as shown in Figure 1.

The PowerGAUGE Energy Reduction Algorithm

The PowerGAUGE energy reduction algorithm uses a multi-objective GA
to optimize multi-dimensional fitness functions. We use the NSGA-II im-
plementation (Deb et al. 2002) to optimize software with respect to both
energy consumption and error. PowerGAUGE takes as input a program
to be optimized and an n-dimensional fitness function. In our case n = 2,
and the fitness function computes the energy consumption of the pro-
gram and error in the program output. Note that PowerGAUGE is not
restricted to optimizing energy consumption and output error; it could
optimize with respect to any properties that can be represented by a fit-
ness function, such as program file size or memory usage.

Recall that one of the fundamental concepts in EC is the choice of
how to represent individuals in the population. Although we start with
programs written in the C programming language, we represent them in
assembly language, a low-level representation of the instructions to be exe-
cuted by the CPU, which is generated from high-level code by a compiler.4

4. Assembly code can also be hand-written, but it is typically verbose and difficult to
understand, so this practice is unusual.
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Figure 1. Pareto frontier for the Blender benchmark. The X-axis indicates the
percentage energy reduction (greater is better), and the Y-axis indicates error (lower is
better). Each point corresponds to a program generated by PowerGAUGE. Example
output images are provided for some programs. The image in the lower-left has no
error and corresponds to a 1% energy savings. The image in the lower-right has a

small amount of error, but corresponds to a 10% energy savings.
Images generated using a Blender demo file by Rylan Wrigh / CC BY,

https://download.blender.org/demo/test/AtvBuggy.zip
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There are several advantages to representing programs at this level:

• Compilers optimize the performance of software by applying semantics-
preserving transformations to the code. By manipulating the out-
put of the compiler, we can incorporate these optimizations.

• Optimization passes consume the majority of time spent during
compilation. Thus, the transformation from high-level code to low-
level assembly takes much more time than the transformation from
low-level assembly into a binary format suitable for execution on a
CPU. By modifying the assembly directly we avoid repeating these
costs for each fitness evaluation.

• High-level code has many syntactic restrictions that must be re-
spected when making modifications. Assembly is much less strict
with many more sequence of instructions considered to be legal.
This flexibility enhances expressiveness and the creation of pro-
grams that could not be generated from source code.

• When targeting a particular machine, compilers for different high-
level languages (e.g., C, Pascal, Fortran) all use identical assembly
language. This feature implies that PowerGAUGE can operate on
programs generated from multiple source-level languages.

One challenge of applying EC to programs, especially assembly pro-
grams, is the large number of instructions and high redundancy of code
across individuals of a population. To cope with this, we adopt the patch
representation developed in earlier work on automated program repair (Le
Goues et al. 2012). Instead of representing an individual as a complete
program, each individual is represented as a list of modifications (edits)
to the original program. In our case, we treat the original assembly code
as a sequence of instructions, and then represent each individual as a se-
quence of modifications in which instructions are deleted, swapped (i.e.,
exchanging the positions of two instructions), or copied (i.e., duplicating
an instruction and inserting it at a random location). Although other
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types of code transformations are possible (e.g., synthesizing new code
(Mechtaev, Yi, and Roychoudhury 2016) or template-based edits (Kim et
al. 2013)), we found that these particular mutations are both effective and
computationally inexpensive.

The second input to a genetic algorithm is its fitness function. In
PowerGAUGE, fitness is two-dimensional: one dimension represents the
level of error in the program’s output, and the other corresponds to the
amount of energy consumed while running the program. Creating a fit-
ness function for energy consumption is conceptually straightforward—
simply run the program and measure or model the energy consumed (in
practice this is surprisingly difficult for some applications). The fitness
function for error is more domain-specific, however. For the purposes
of this chapter we consider a simple example: the image produced by
Blender, an open-source 3D rendering application. The fitness function
measures error as the “distance” from the image output by the program
to a reference image. There are natural distance metrics for images, but
for other applications it may not be feasible to quantify the output error,
e.g., for an email client. This may seem like a limitation, but in these
cases PowerGAUGE can still optimize for energy consumption alone.

Figure 1 shows the Pareto frontier of different versions of Blender

generated during an actual PowerGAUGE run. The X-axis indicates the
percentage energy reduction (greater is better), while the Y-axis indicates
the percentage error (lower is better). The “ideal” program would fall
in the lower-right of this graph, generating identical output to the origi-
nal program while consuming zero energy. To give some intuition about
what these errors look like, several of the Pareto programs are annotated
with their output. The program in the lower-left generates an image with
no error and uses 1% less energy than the original program. As we tol-
erate more error and move along the Pareto frontier energy savings in-
crease, until we reach the upper-right of the figure. At this point, error
is high, but there is a 67% energy savings over the original program. A
user of PowerGAUGE could generate these Pareto optimal programs and
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select the one that has an acceptable level of error for her application to
maximize energy savings.

Open Questions and Future Directions

Although PowerGAUGE and related approches show promise for reduc-
ing the energy budgets of software, there are still many open questions
and future directions to explore. Here, we discuss two: the open prob-
lem of effective energy measurement, and the practical application of
PowerGAUGE to security.

Energy Measurement

Any empirically-based search method for energy reduction requires a
method for measuring or estimating energy consumption of candidate
programs. Modeling is one approach that avoids the expense and com-
munication overhead of additional hardware. However, in our prelimi-
nary studies, we found that energy models were inaccurate to the point of
interfering with the search, and physical measurements using specialized
hardware became an attractive option. This observation may not apply
to all energy models or all search methods, but others have made sim-
ilar observations (Haraldsson and Woodward 2015), which focused our
attention on energy measurement methods.

Modern processors often include internal features such as Running
Average Power Limit (RAPL) (David et al. 2010), which report consump-
tion measurements, but in our experiments we found these to be unreli-
able, and the documentation of these features was inadequate. In addi-
tion, measuring only internal CPU energy ignores the energy consump-
tion of other system components, which might be affected by a change
to software (e.g., memory modules, hard disks, graphics cards). An ideal
technique would capture the energy consumption of the entire system.
Commercial power monitoring devices exist, but they tend either to be
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prohibitively expensive, only applicable to mobile devices, or to have in-
sufficient resolution with respect to time and/or energy. In our case, the
simplest solution was to construct our own device to measure energy ac-
curately and cost-effectively to use in our search process.

Although we used open-source hardware and provide the source code
for the measurement device, better built-in support for energy monitor-
ing would enable anyone to more easily run a search algorithm without
having to construct their own hardware. For example, monitoring cir-
cuits with a software interface could be included in server power sup-
plies, or CPU manufacturers could provide more detailed energy con-
sumption measurements.

Side-Channel Attack Mitigation

A common security concern is the leaking of sensitive information through
side-channels. A side-channel is a source of information related to the
effects of a computation on its environment, rather than through weak-
nesses in the algorithm itself. An example of this is a timing attack in the
Unix login command. Early versions of login only ran the expensive
hash function required to check password validity if the provided login
name was a known system user. This allowed an attacker to easily check
if a username was legal: if the login failed quickly, the username did not
exist, while if the login took a long time to fail, the username did exist
and the system was checking the validity of the password. Once a le-
gitimate username was discovered, the attacker could move on to trying
common passwords and often succeeded in gaining entry. This type of
side-channel attack was also a key component of the recent Spectre and
Meltdown vulnerabilities found in x86 processors (Kocher et al. 2018;
Lipp et al. 2018).

Similarly, differences in energy consumption can leak information
about computations. Search-based techniques could be used to mitigate
these effects by normalizing the energy consumption of commands. In
the case of the login program, the side-channel attack was mitigated by
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adding a random delay when a login failed, purposefully increasing the
runtime to improve security. Although in this chapter our focus is pri-
marily on the reduction of energy consumption, search-based techniques
could also potentially be used to increase the energy consumption of soft-
ware or even target a specific level of energy used by a computation.

Conclusion

As computation migrates to large-scale datacenters, concern about the
environmental and economic impact of software is growing. Despite in-
terest in limiting the energy footprint of software, few general-purpose
techniques have specifically targeted the creation of low-energy programs.
This chapter describes a search-based approach to this problem. Us-
ing methods from evolutionary computation, combined with sufficiently
accurate energy measurements or models, PowerGAUGE automatically
modifies programs and identifies those that consume less energy while
preserving required functionality. Genetic improvement methods such
as PowerGAUGE do not require human guidance or prior knowledge of
how a particular software modification will impact program behavior.
Although the research described here is still in its early stages, we are op-
timistic that effective and developer-friendly techniques for improving
the energy efficiency of software will ultimately play a role in reducing
energy computation.
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