
A Turing Test for Genetic Improvement
Afsoon Afzal, Jeremy Lacomis, Claire Le Goues, Christopher S. Timperley

Carnegie Mellon University

Pi�sburgh, Pennsylvania, USA

afsoona,jlacomis,clegoues,ctimperley@cs.cmu.edu

ABSTRACT
Genetic improvement is a research �eld that aims to develop search-

based techniques for improving existing code. GI has been used

to automatically repair bugs, reduce energy consumption, and to

improve run-time performance. In this paper, we re�ect on the

o�en-overlooked relationship between GI and developers within

the context of continually evolving so�ware systems. We introduce

a distinction between transparent and opaque patches based on

intended lifespan and developer interaction. Finally, we outline a

Turing test for assessing the ability of a GI system to produce opaque

patches that are acceptable to humans. �is motivates research into

the role GI systems will play in transparent development contexts.

ACM Reference format:
Afsoon Afzal, Jeremy Lacomis, Claire Le Goues, Christopher S. Timperley.

2018. A Turing Test for Genetic Improvement. In Proceedings of GI’18:
IEEE/ACM 4th International Genetic Improvement Workshop, Gothenburg,
Sweden, June 2, 2018 (GI’18), 2 pages.
DOI: 10.1145/3194810.3194817

1 INTRODUCTION
Genetic improvement (GI) applies search techniques to automati-

cally improve existing so�ware artifacts [6]. GI has demonstrated

the ability to, amongst other things, automatically repair programs,

at both the binary [7] and source-code level [3], and reduce resource

consumption (e.g., run-time [8]).

We observe that existing GI work largely considers so�ware

systems as static, treating correctness with respect to a �xed set of

requirements. In reality, so�ware systems and development teams

are constantly evolving as requirements are changed and new de-

velopers are hired. In these cases, code serves a dual purpose: it

both communicates instructions to a computer, and communicates

a developer’s intent to other humans. We argue that code that is

intended to be integrated into a dynamic development environ-

ment should be easy for developers to understand and modify. We

envision a world where GI algorithms are trusted to work along-

side humans in a development environment, and generated code is

considered to be of equal quality to code wri�en manually.

With this inmind, we propose a Turing test [10] for GI. In his sem-

inal paper, Turing proposed to answer the question “Can machines

think?”, via an experiment wherein an interrogator is challenged to

tell the di�erence between a hidden human and computer by asking

them wri�en questions and examining the answers. We believe

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

GI’18, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). 978-1-4503-5753-1/18/06. . .$15.00

DOI: 10.1145/3194810.3194817

that a similar experiment can be constructed to answer the ques-

tion “Can machines generate code similar to humans?” �is vision

motivates a research agenda to interrogate the implications of code-

generating bots interacting with humans in the socio-technical

ecosystem that characterizes modern so�ware development.

2 OPAQUE VS. TRANSPARENT PATCHES
Initial assumptions about the requirements of a codebase in�uence

the acceptability judgment of a generated patch. �at is, the quality

of GI patches have been measured against the immediate perfor-

mance of the binary resulting from the improvement process, with-

out considering the long-term impact the automatically-generated

patch will have on the code.

When a patch is urgent, such as in security- or uptime-critical

scenarios, patch maintainability or readability are indeed less im-

portant than semantics. Consider the recent reactionary operating

system kernel patches for the Meltdown [4] and Spectre [2] bugs.

�e current patches for these bugs involve unintuitive strategies

such as retpolines. In such cases, we agree withMonperrus’ asser-

tion that “we should not be afraid of alien ways of writing code.” [5],

and we should not limit the types of patches GI might generate. We

call patches generated without thought to maintainability opaque,
because they are not primarily intended to be read by humans.

Figure 1a depicts an uptime-critical system which bene�ts from

opaque patches. A common example of opaque code is compiler

output, which can be unintuitive, but is highly performant.

However, rapid repair of serious bugs is only one use case envi-

sioned for GI. Another goal of GI is to reduce development overhead

through integration with the development process by, e.g., patch-

ing simple bugs or regressions and automatically integrating them

into the codebase. �is could free up valuable developer time for

more di�cult problems. Since the goal in this dynamic se�ing is to

directly patch actively developed source code, patch understandabil-

ity is paramount. We refer to these types of patches as transparent:
their source code is intended to be seen and used by developers,

shown by Figure 1b. We focus in this paper on transparent patches.

3 THE DEVELOPER IMITATION GAME
Code that is integrated into a dynamic development environment

must be both comprehensible and maintainable to have a long

lifetime. Even fully correct code will change as requirements evolve,

and so code must be modi�able. Comprehensible code also reduces

onboarding time, since new developers can struggle with di�cult-

to-read code. As such, transparent patches, which are intended to

be read and modi�ed by humans, should have qualities similar to

code wri�en by humans. In addition to the advantages to human

developers, biasing code generation toward human-like patches

may increase the subjective “acceptability” of patches generated by

program repair tools [1].

GI’18, June 2, 2018, Gothenburg, Sweden A. Afzal, J. Lacomis, C. Le Goues, C. S. Timperly

(a) Opaque (b) Transparent

Figure 1: Opaque vs. transparent GI. Dashed arrows represent code production; solid arrows, code management.

We propose a Turing-style test to evaluate the “human-ness” of

a GI system, as follows: a human interrogator speci�es a desired

patch to both a human developer and a GI system. Each competitor

returns a generated patch to the interrogator, who a�empts to

determinewhich of the patches was generated by the GI system, and

which was generated by the human. If the GI system successfully

convinces the interrogator that the patch was wri�en by a human,

then it is has “won” the game. As with the classic Turing test,

multiple rounds of interaction would be required. With multiple

rounds, and di�erent interrogators, it would be possible to assign a

continuous value to the “humanity” of a GI system, based on how

o�en it successfully deceives an interrogator. �is could be one

metric for comparing GI algorithms.

Much like Turing’s original formulation of the test, our version

is largely hypothetical, but our idealized version provides guide-

lines for practical real-world experiments. For example, researchers

might examine how automated bots interact with developers in

socio-technical ecosystems such as GitHub. GitHub plugins are al-

ready increasingly automating previously human-driven tasks (e.g.,

testing, refactoring, code review); however, social signals remain

a critical part of the social coding process [9]. One experimental

possibility is to modify human- and machine-generated patches

such that each appear to come from the other. Are developers more

willing to accept automatically generated patches if they more

closely resemble (or are claimed to be) developer-wri�en patches?

Similarly, would a human-generated patch be more or less likely to

be merged if it appeared automatically generated?

It will always be as important for GI patches to be reviewed as

carefully as human-wri�en patches. Both GI techniques and human

developers change program semantics when patching; both gen-

erated patches and humans can make mistakes. We speculate that

code with more human qualities will help mitigate biases of code

reviewers and encourage a healthy level of skepticism. It would

be unproductive for a reviewer with a deep mistrust in automated

repair to reject all GI patches; it would also be ill-advised to blindly

accept them as if they were generated by semantics-preserving

techniques such as compilation. A sensible middle ground seems

to be treating all patches as if they were generated by a trusted,

competent, yet still fallible human developer.

4 CONCLUSION
So�ware systems are constantly evolving. Code is added, removed,

and rewri�en in response to continually shi�ing requirements.

Notions of performance and even correctness can adjust in response

to customer appetites, privacy and security concerns, and changing

platforms. However, thus far, GI has mostly concerned itself with

the improvement static so�ware systems against a �xed set of

requirements (e.g., test cases, benchmark workloads). We argue

that GI should embrace the evolving nature of so�ware systems by

considering the lifetime of its proposed improvements.

To support this argument, we introduce patch opacity. Opaque
patches are unchecked by the developer, and may a�ect either

source code or a binary. Such patches are similar to compiler opti-

mizations: they should alter program behavior in predictable ways

to achieve improvements that are ephemeral to the codebase. By

contrast, transparent patches will persist in the codebase, alongside

changes made by developers. �erefore, transparent patches must

also possess qualities that are intrinsic to (good) human-produced

patches, such as clarity, maintainability, and stylistic consistency.

To capture the needs of a transparent GI system, we outline a

modi�ed Turing test adapted to patches, along with several possible

research implications. With it in mind, we challenge the GI com-

munity to consider and frame their techniques within the richer

context of so�ware evolution.

ACKNOWLEDGEMENTS
�is research was partially funded by AFRL (#FA8750-15-2-0075)

and DARPA (#FA8750-16-2-0042); the authors are grateful for their

support. Any opinions, �ndings, or recommendations expressed

are those of the authors and do not necessarily re�ect those of the

US Government.

REFERENCES
[1] D. Kim, J. Nam, J. Song, and S. Kim. 2013. Automatic Patch Generation Learned

from Human-wri�en Patches. In ICSE 13. 802–811.
[2] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,

�omas Prescher, Michael Schwarz, and Yuval Yarom. 2018. Spectre A�acks:

Exploiting Speculative Execution. ArXiv e-prints (Jan. 2018).
[3] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. 2012. A Systematic

Study of Automated Program Repair: Fixing 55 out of 105 Bugs for $8 Each. In

International Conference on So�ware Engineering (ICSE ’12). 3–13.
[4] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher, D.

Genkin, Y. Yarom, and M. Hamburg. 2018. Meltdown. ArXiv e-prints (Jan. 2018).
[5] M. Monperrus. 2014. A Critical Review of ”Automatic Patch Generation Learned

from Human-Wri�en Patches”: Essay on the Problem Statement and the Evalua-

tion of Automatic So�ware Repair. In ICSE ’14. 234–242.
[6] J. Petke, S. Haraldsson, M. Harman,W. Langdon, D.White, and J.Woodward. 2018.

Genetic Improvement of So�ware: A Comprehensive Survey. IEEE Transactions
on Evolutionary Computation PP, 99 (2018), 1–1.

[7] E. Schulte, J. DiLorenzo, W. Weimer, and S. Forrest. 2013. Automated Repair of

Binary and Assembly Programs for Cooperating Embedded Devices. In ASPLOS
’13. 317–328.

[8] P. Si�hi-Amorn, N. Modly, W. Weimer, and J. Lawrence. 2011. Genetic Program-

ming for Shader Simpli�cation. ACM Trans. Graph. 30, 6, Article 152 (Dec. 2011),
12 pages.

[9] J. Tsay, L. Dabbish, and J. Herbsleb. 2014. In�uence of Social and Technical

Factors for Evaluating Contribution in GitHub. In ICSE ’14. 356–366.
[10] A. M. Turing. 1950. Computing Machinery and Intelligence. Mind 59 (1950),

433–460.

	Abstract
	1 Introduction
	2 Opaque vs. Transparent Patches
	3 The Developer Imitation Game
	4 Conclusion
	References

